Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T02:17:50.670Z Has data issue: false hasContentIssue false

Thirteen genes (Cebpb, E2f1, Tcf4, Cyp24, Pck1, Acra4, Edn3, Kcnb1, Mc3r, Ntsr, Cd40, Plcg1 and Rcad) that probably lie in the distal imprinting region of mouse Chromosome 2 are not monoallelically expressed

Published online by Cambridge University Press:  14 April 2009

Christine M. Williamson*
Affiliation:
MRC Radiobiology Unit, Chilton, Didcot. Oxon. OX11 0RD, UK
Elizabeth R. Dutton
Affiliation:
MRC Radiobiology Unit, Chilton, Didcot. Oxon. OX11 0RD, UK
Catherine M. Abbott
Affiliation:
MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
Colin V. Beechey
Affiliation:
MRC Radiobiology Unit, Chilton, Didcot. Oxon. OX11 0RD, UK
Simon T. Ball
Affiliation:
MRC Radiobiology Unit, Chilton, Didcot. Oxon. OX11 0RD, UK
Josephine Peters
Affiliation:
MRC Radiobiology Unit, Chilton, Didcot. Oxon. OX11 0RD, UK
*
* Corresponding author. Telephone: (01235) 834 393; Fax: (01235) 834 776; Email: cwilliamson@har-rbu.mrc.ac.uk.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Seven imprinted genes are currently known in the mouse but none have been identified yet in the distal imprinting region of mouse Chromosome (Chr) 2, a region which shows striking linkage conservation with human chromosome 20q13. Both maternal duplication/paternal deficiency and its reciprocal for distal Chr 2 lead to mice with abnormal body shapes and behavioural abnormalities. We have tested a number of candidate genes, that are either likely or known to lie within the distal imprinting region, for monoallelic expression. These included 3 genes (Cebpb, E2f1 and Tcf4) that express transcription factors, 2 genes (Cyp24 and Pck1) that are involved in growth, 5 genes (Acra4, Edn3, Kcnb1, Mc3r and Ntsr) where a defect could lead to neurological and probably behavioural problems, and 3 genes (Cd40, Plcg1 and Rcad) that are less obvious candidates but sequence information was available for designing primers to test their expression. On/off expression of each gene was tested by reverse transcription–polymerase chain reaction (RT–PCR) analysis of RNA extracted from tissues of mice with maternal duplication/paternal deficiency and its reciprocal for the distal region of Chr 2. None of the 13 genes is monoallelically expressed in the appropriate tissues before and shortly after birth which suggests that these genes are not imprinted later in development. This study has narrowed down the search for imprinted genes, and valuable information on which genes have been tested for on/off expression is provided. Since there is considerable evidence of conservation of imprinting between mouse and human, we would predict that the 13 genes are not imprinted in human. Five of the genes: E2f1, Tcf4, Kcnb1, Cd40 and Rcad, have not yet been mapped in human. However, because of the striking linkage conservation observed between mouse Chr 2 and human chromosome 20, we would expect these genes to map on human chromosome 20q13.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

References

Abbott, C. M., Malas, S., Pilz, A., Pate, L., Ali, R., & Peters, J., (1994). Linkage mapping around the ragged (Ra) and wasted (wst) loci on distal mouse Chromosome 2. Genomics 20, 9498.CrossRefGoogle ScholarPubMed
Albrecht, B., Lorra, C., Stocker, M., & Pongs, O., (1993). Cloning and characterisation of a human delayed rectifier potassium channel gene. Receptors and Channels 1, 99110.Google ScholarPubMed
Bartolomei, M. S., (1994). The search for imprinted genes. Nature Genetics 6, 220221.CrossRefGoogle ScholarPubMed
Beale, E. G., Chrapkiewicz, W. B., Scoble, H. A., Metz, R. J., Quick, D. P., Noble, R. L., Donelson, J. E., Biemann, K., & Granner, D. K., (1985). Rat hepatic cytosolic phosphoenolpyruvate carboxykinase (GTP) structure of the protein, messenger RNA, and gene. Journal of Biological Chemistry 260, 1074810760.CrossRefGoogle ScholarPubMed
Beechey, C. V., & Cattanach, B. M., (1994). Genetic imprinting map. Mouse Genome 92, 108110.Google Scholar
Beechey, C. V., & Peters, J., (1994). Dosage effects of the distal Chromosome 2 imprinting region. Mouse Genome 92, 353354.Google Scholar
Bloch, K. D., Eddy, R. L., Shows, T. B., & Quertermous, T., (1989). cDNA cloning and chromosomal assignment of the gene encoding endothelin 3. Journal of Biological Chemistry 264, 1815618161.CrossRefGoogle ScholarPubMed
Brown-Shimer, S., Johnson, K. A., Lawrence, J. B., Johnson, C., Bruskin, A., Green, N. R., & Hill, D. E., (1990). Molecular cloning and chromosomal mapping of the human gene encoding protein phosphotoyrosyl phosphatase 1B. Proceedings of the National Academy of Sciences, USA 87, 51485152.CrossRefGoogle ScholarPubMed
Campbell, R., Gosden, C. M., & Bonthron, D. T., (1994). Parental origin of transcription from the human GNAS1 gene. Journal of Medical Genetics 31, 607614.CrossRefGoogle ScholarPubMed
Cao, Z., Umek, R. M., & McKnight, S. L., (1991). Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes & Development 5, 15381552.CrossRefGoogle Scholar
Cattanach, B. M., & Kirk, M., (1985). Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315, 496498.CrossRefGoogle ScholarPubMed
Cattanach, B. M., & Jones, J., (1994). Genetic imprinting in the mouse: implications for gene regulation. Journal of Inherited Metabolic Disease 17, 403420.CrossRefGoogle ScholarPubMed
Cattanach, B. M., Evans, E. P., Burtenshaw, M., & Beechey, C. V., (1992). Further delimitation of the distal Chromosome 2 imprinting region. Mouse Genome 90, 82.Google Scholar
Chomczynski, P., & Saachi, N., (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Analytical Biochemistry 162, 156159.CrossRefGoogle Scholar
Church, G. M., & Gilbert, W., (1984). Genomic sequencing. Proceedings of the National Academy of Sciences, USA 81, 19911995.CrossRefGoogle ScholarPubMed
Copeland, N. G., Jenkins, N. A., Gilbert, D. J., Eppig, J. T., Maltais, L. J., Miller, J. C., Dietrich, W. F., Weaver, A., Lincoln, S. E., Steen, R. G., Stein, L. D., Nadeau, J. H., & Lander, E. S., (1993). A genetic linkage map of the mouse: current applications and future prospects. Science 262, 5766.CrossRefGoogle ScholarPubMed
Davies, S. J., & Hughes, H. E., (1993). Imprinting in Albright's hereditary osteodystrophy. Journal of Medical Genetics 30, 101103.CrossRefGoogle ScholarPubMed
Davies, P. O., Poirier, C., Deltour, L., & Montagutelli, X., (1994). Genetic reassignment of the insulin-1 (Ins1) gene to distal mouse Chromosome 19. Genomics 21, 665667.CrossRefGoogle ScholarPubMed
Gantz, I., Konda, Y., Tashiro, T., Shimoto, Y., Miwa, H., Munzert, G., Watson, S. J., DelValle, J., & Yamada, T., (1993). Molecular cloning of a novel melanocortin receptor. Journal of Biological Chemistry 268, 82468250.CrossRefGoogle ScholarPubMed
Ruiz, J. P. Garcia, Ingram, B., & Hanson, R. E., (1978). Changes in hepatic messenger RNA for phosphoenolpyruvate carboxykinase (GTP) during development. Proceedings of the National Academy of Sciences, USA 75, 41894193.CrossRefGoogle Scholar
Goldman, D., Deneris, E., Luyten, W., Kochhar, A., Patrick, J., & Heinemann, S., (1987). Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cell 48, 965973.CrossRefGoogle ScholarPubMed
Grimaldi, J. C., Torres, R., Kozak, C. A., Chang, R., Clark, E. A., Howard, M., & Cockayne, D. A., (1992). Genomic structure and chromosomal mapping of the murine CD40 gene. Journal of Immunology 149, 39213926.CrossRefGoogle ScholarPubMed
Grüneberg, H., & Lee, A. J., (1973). The anatomy and development of brachypodism in the mouse. Journal of Embryology and Experimental Morphology 30, 119141.Google ScholarPubMed
Hillyard, A. L., Doolittle, D. P., Davisson, M. T., & Roderick, T. H., (1993). Locus map of mouse. Mouse Genome 91, 1539.Google Scholar
Klocke, R., Roberds, S. L., Tamkun, M. K., Gronemeier, M., Augustin, A., Albrecht, B., Pongs, O., & Jockusch, H., (1993). Chromosomal mapping in the mouse of eight K+-channel genes repressing the four shaker-like subfamilies shaker, shab, shaw and shal. Genomics 18, 568574.CrossRefGoogle Scholar
Lania, L., Donti, E., Pannuti, A., Pascucci, A., Pengue, G., Feliciello, I., La Mantia, G., Lanfrancone, L., & Pelicci, P.-G., (1990). cDNA isolation, expression analysis, and chromosomal localization of two human zinc finger genes. Genomics 6, 333340.CrossRefGoogle ScholarPubMed
Laurent, P., Clerc, P., Mattei, M.-G., Forgez, P., Dumont, X., Ferrara, P., Caput, D., & Rostene, W., (1994). Chromosomal localization of mouse and human neurotensin receptor genes. Mammalian Genome 5, 303306.CrossRefGoogle ScholarPubMed
Li, Y., Slansky, J. E., Myers, D. J., Drinkwater, N. R., Kaelin, W. G., & Farnham, P. J., (1994). Cloning, chromosomal location and characterization of mouse E2F1. Molecular and Cellular Biology 14, 18611869.CrossRefGoogle ScholarPubMed
Lock, L. F., Gilbert, D. J., Street, V. A., Migeon, M. B., Jenkins, N. A., Copeland, N. G., & Tempel, B. L., (1994). Voltage-gated potassium channel genes are clustered in paralogous regions of the mouse genome. Genomics 20, 354362.CrossRefGoogle ScholarPubMed
Lovett, M., (1994). Fishing for complements: finding genes by direct selection. TIGS 10, 352357.CrossRefGoogle ScholarPubMed
Lu, J. H., & Negre, S., (1993). Use of glycerol for enhanced efficiency and specificity of PCR amplification. TIGS 9, 297.Google ScholarPubMed
Malas, S., Peters, J., & Abbott, C. M., (1994). The genes for endothelin 3, vitamin D 24-hydroxylase and melanocortin 3 receptor map to distal mouse Chromosome 2, in the region of conserved synteny with human chromosome 20. Mammalian Genome 5, 577579.CrossRefGoogle ScholarPubMed
Matsunami, H., Miyatani, S., Inoue, T., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., & Takeichi, M., (1993). Cell binding specificity of mouse R-cadherin and chromosomal mappings of the gene. Journal of Cell Science 106, 401409.CrossRefGoogle ScholarPubMed
Miyasaka, H., & Li, S. S.-L., (1992). The cDNA cloning, nucleotide sequence and expression of an intracellular protein tyrosine phosphatase from mouse testis. Biochemical and Biophysical Research communications 185, 818825.CrossRefGoogle ScholarPubMed
Molhuizen, H. O. F., Zeeuwen, P. L. J. M., Weghuis, D. O., Kessel, A. G. V., & Schalkwijk, J., (1994). Assignment of the human gene encoding the epidermal serine proteinase inhibitor SKALP (PI3) to chromosome region 20q12–q13. Cytogenetics and Cell Genetics 66, 129131.CrossRefGoogle ScholarPubMed
Nef, P., Oneyser, C., Alliod, C., Couturier, S., & Ballivet, M., (1988). Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. Embo J. 7, 595601.CrossRefGoogle ScholarPubMed
Ohkubo, S., Itoh, Y., Kimura, C., Onda, H., & Fujino, M., (1990). Nucleotide sequence of a rabbit genomic DNA encoding mature endothelin-3. Nucleic Acids Research 18, 374.CrossRefGoogle ScholarPubMed
Ohyama, Y., Noshiro, M., Eggertsen, G., Gotoh, O., Kato, Y., Bjoerkhem, I., & Ohku, K., (1993). Structural characterisation of the gene encoding rat 25-hydroxyvitamin-D324-hydroxylase Biochemistry 278, 195198.Google Scholar
Pak, M. D., Covarnibias, M., Ratcliffe, A., & Salkoff, L. A., (1991). A mouse brain homologue of the drosophila Shab K+ channel delayed-rectifier properties. Journal of Neuroscience 11, 869880.CrossRefGoogle Scholar
Peters, J., & Ball, S. T., (1989). Parental origin of Ada and its expression. Mouse News Letter 84, 84.Google Scholar
Peters, J., Beechey, C. V., Ball, S. T., & Evans, E. P., (1994). Mapping studies of the distal imprinting region of mouse Chromosome 2. Genetical Research 63, 169174.CrossRefGoogle ScholarPubMed
Singh, P., Wong, S. H., & Hong, W., (1994). Overexpression of E2F-1 in rat embryo fibroblasts leads to neoplastic transformation. The EMBO Journal 13, 33293338.CrossRefGoogle ScholarPubMed
Siracusa, L. D., & Abbott, C. M., (1993). Mouse Chromosome 2. Mammalian Genome 4, S31–S46.CrossRefGoogle ScholarPubMed
Sladek, F. M., Zhong, W., Lai, E., & Darnell, J. E., (1990). Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes & Development 4, 23532365.CrossRefGoogle ScholarPubMed
Stahl, M. L., Ferenz, C. R., Kelleher, K. L., Kriz, R. W., & Knopf, J. L., (1988). Sequence similarity of phospholipase C with the non-catalytic region of src. Nature 332, 269272.CrossRefGoogle ScholarPubMed
Storm, E. E., Huynh, T. V., Copeland, N. G., Jenkins, N. A., Kingsley, D. M., & Lee, S.-J., (1994). Limb alterations in brachypodism mice due to mutations in a new member of the TGF β-superfamily. Nature 368, 639–64.CrossRefGoogle Scholar
Suh, P.-G., Ryu, S. H., Moon, K. H., Suh, H. W., & Rhee, S. G., (1988). Inositol phospholipid-specific phospholipase C: complete cDNA and protein sequences and sequence homology to tyrosine kinase-related oncogene products. Proceedings of the National Academy of Science USA 85, 54195423.CrossRefGoogle ScholarPubMed
Takeichi, M., (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251, 14511455.CrossRefGoogle ScholarPubMed
Tanaka, K., Masu, M., & Nakanishi, S., (1990). Structure and functional expression of the cloned rat neurotensin receptor. Neuron 4, 847854.CrossRefGoogle ScholarPubMed
Vita, N., Laurent, P., Lefort, S., Chalon, P., Dumont, X., Kaghad, M., Gully, D., LeFur, G., Ferrara, P., & Caput, D., (1993). Cloning and expression of a complementary DNA encoding a high affinity human neurotensin receptor. FEBS 317, 139142.CrossRefGoogle ScholarPubMed
Williamson, C. M., Dutton, E. R., Beechey, C. V., & Peters, J., (1994). Protective protein for β-galactosidase, Ppgb, maps to the distal imprinting region of mouse Chromosome 2 but is not imprinted. Genomics 22, 240242.CrossRefGoogle Scholar