Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T07:51:38.672Z Has data issue: false hasContentIssue false

Polymorphisms distinguishing different mouse species and t haplotypes

Published online by Cambridge University Press:  14 April 2009

Yoshihito Horiuchi
Affiliation:
Max-Planck-Institut für Biologie, Abteilung lmmungenetik, 7400 Tūbingen, Germany
Alexander Agulnik
Affiliation:
Max-Planck-Institut für Biologie, Abteilung lmmungenetik, 7400 Tūbingen, Germany
Felipe Figueroa
Affiliation:
Max-Planck-Institut für Biologie, Abteilung lmmungenetik, 7400 Tūbingen, Germany
Herbert Tichy
Affiliation:
Max-Planck-Institut für Biologie, Abteilung lmmungenetik, 7400 Tūbingen, Germany
Jan Klein*
Affiliation:
Max-Planck-Institut für Biologie, Abteilung lmmungenetik, 7400 Tūbingen, Germany Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL 33136, USA
*
* Corresponding author at address 1.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Three anonymous chromosome 17 DNA markers, D17Tu36, D17Tu43, and D17Le66B, differentiate between house mouse species and/or between t chromosomes. The D17Tu36 probe, which maps near the Fu locus and to the In(17)4 on t chromosomes, identifies at least 15 haplotypes, each haplotype characterized by a particular combination of DNA fragments obtained after digestion with the Taq I restriction endonuclease. Ten of these haplotypes occur in Mus domesticus, while the remaining five occur in M. musculus. In each of these two species, one haplotype is borne by t chromosomes while the other haplotypes are present on non-r chromosomes. The D17Tu43 probe, which maps near the D17Leh122 locus and to the In(17)3 on t chromosomes, also identifies at least 15 haplotypes in Taq I DNA digests, of which nine occur in M. domesticus and six in M. musculus. One of the nine M. domesticus haplotypes is borne by t chromosomes, the other haplotypes are borne by non-f chromosomes; two of the six M. musculus haplotypes are borne by t chromosomes and the remaining four by non-f chromosomes. Some of the D17Tu43 haplotypes are widely distributed in a given species, while others appear to be population-specific. Exceptions to species-specificity are found only in a few mice captured near the M. domesticus-M. musculus hybrid zone or in t chromosomes that appear to be of hybrid origin. The D17Leh66B probe, which maps to the In(17)2, distinguishes three haplotypes of M. domesticus-dznved t chromosomes and one haplotype of M. musculus-derivzd t chromosomes. Because of these characteristics, the three markers are well suited for the study of mouse population genetics in general and of t chromosome population genetics in particular. A preliminary survey of wild M. domesticus and M. musculus populations has not uncovered any evidence of widespread introgression of genes from one species to the other; possible minorintrogressions were found only in the vicinity of the hybrid zone. Typing of inbred strains has revealed the contribution of only M. domesticus DNA to the chromosome 17 of the laboratory mouse.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

References

Ammerman, A. J. & Cavalli-Sforza, L. L. (1984). The Neolithic Transition and the Genetics of Populations in Europe. Princeton, New Jersey: Princeton University Press.CrossRefGoogle Scholar
Artzt, K.Babiarz, B. & Bennett, D. (1979). t haplotype (tw75) overlapping two complementation groups. Genetical Research 33, 279288.Google Scholar
Artzt, K.Shin, H.-S & Bennett, D. (1982). Gene mapping within the T/t complex of the mouse. II. Anomalous position of the H-2 complex in t haplotypes. Cell 28, 471476.CrossRefGoogle Scholar
Auffray, J.-CVanlergerghe, F. & Britton-Davidian, J. (1990). House mouse progression in Eurasia: a paleontological and archaeo-zoological approach. British Journal of the Linnean Society 41, 1325.CrossRefGoogle Scholar
Bonhomme, F. (1986). Evolutionary relationships in the genus Mus. Current Topics in Microbiology and Immunology 127, 1933.Google ScholarPubMed
Bonhomme, F.Catalan, J.Britton-Davidian, J.Chapman, V. M.Moriwaki, K.Nevo, E. & Thaler, L. (1984). Biochemical diversity and evolution in the genus Mus. Biochemical Genetics 22, 275303.Google Scholar
Ferris, S. D.Sage, R. D.Prager, E. M.Ritte, U. & Wilson, A. C. (1983 a). Mitochondrial DNA evolution in mice. Genetics 105, 681721.CrossRefGoogle ScholarPubMed
Ferris, S. D.Sage, R. D.Huang, C.-M.Nielsen, J. T.Ritte, U. & Wilson, A. C. (1983b). Flow of mitochondrial DNA across a species boundary. Proceedings of the National Academy of Sciences USA 80, 22902294.Google Scholar
Figueroa, F.Golubic, M.Nizetic, D. & Klein, J. (1985). Evolution of mouse Mhc genes borne by t chromosomes. Proceedings of the National Academy of Sciences USA 82, 28192823.CrossRefGoogle Scholar
Figueroa, F.Tichy, H.McKenzie, I.Hammerling, U. & Klein, J. (1986). Polymorphism of lymphocyte antigens encoding loci in wild mice. Current Topics in Microbiology and Immunology 127, 229235.Google Scholar
Figueroa, F.Neufeld, E.Ritte, U. & Klein, J. (1988). tspecific DNA polymorphisms among wild mice from Israel and Spain. Genetics 119, 157160.CrossRefGoogle ScholarPubMed
Gyllensten, U. & Wilson, A. C. (1987). Interspecific mitochondrial DNA transfer and the colonization of Scandinavia by mice. Genetical Research 49, 2529.Google Scholar
Hammer, M. F.Schimenti, J. & M, Silver L.. (1989). The evolution of mouse chromosome 17 and the origin of t complex inversions. Proceedings of the National Academy of Sciences USA 86, 32613265.CrossRefGoogle Scholar
Herrmann, B.Bucan, M.Mains, P. E.Frischauf, A.-M.Silver, L. M. & Lehrach, H. (1986). Genetic analysis of the proximal portion of the mouse t complex: Evidence for a second inversion within t haplotypes. Cell 44, 469–76.CrossRefGoogle Scholar
Klein, J. (1972). Histocompatibility-2 system in wild mice. I. Identification of five new H-2 chromosomes. Transplantation 13, 291299.CrossRefGoogle ScholarPubMed
Klein, J. (1975). Biology of the Mouse Histocompatibility-2 Complex. New York: Springer Verlag.CrossRefGoogle Scholar
Klein, J. (1986). Natural History of the Major Histocompatibility Complex. New York: John Wiley.Google Scholar
Klein, J.Sipos, P. & Figueroa, F. (1984). Polymorphism of complex genes in European wild mice. Genetical Research 30, 93106.Google Scholar
Klein, J.Tichy, H. & Figueroa, F. (1987). On the origin of mice. Annal Universidad de Chile 5, 91120.Google Scholar
Kurihara, Y.Miyashita, N.Moriwaki, K.Wang, C.-H.Petras, M. L.Bonhomme, F.Hoc, W. I. & Kohno, S. I. (1985). Serological survey of T-lymphocyte differentiation antigens in wild mice. Immunogenetics 22, 211218.CrossRefGoogle ScholarPubMed
Kurihara, Y.Sakaizumi, M.Hoi-Sen, Y.Kanehisa, T. & Moriwaki, K. (1988). Ly-2.3 antigen derived from subspecies of the Asian mouse (Mus musculus castaneus). Immunogenetics 28, 289291.CrossRefGoogle ScholarPubMed
Marshall, J. T. (1981). Taxonomy. In The Mouse in Biomedical Research, vol. I (ed. Foster, H. L.Small, D. D. & Fox, J. G.), pp. 1726. New York: Academic Press.Google Scholar
Miyashita, N.Moriwaki, K.Minezawa, M.Yonekawa, H.Bonhomme, F.Migita, S.Yu, Z.Lu, D.Xho, W. & Thohari, M. (1985). Allelic constitution of hemoglobin beta chain in wild populations of the house mouse, Mus musculus. Biochemical Genetics 23, 975986.CrossRefGoogle ScholarPubMed
Moriwaki, K.Miyashita, N. & Yonekawa, H. (1985). Genetic survey of the origin of laboratory mice and its implication in genetic monitoring. Eighth ICLAS/CALAS Symposium Proceedings, pp. 237247. Stuttgart: Gustav Fischer Verlag.Google Scholar
Neufeld, E.Vincek, V.Figueroa, F. & Klein, J. (1991). Limits of the distal inversion in the t complex of the house mouse: evidence for linkage disequilibria. Mammalian Genome 1, 242248.Google Scholar
Nobuhara, H.Kuida, K.Furutani, M.Shiroishi, T.Moriwaki, K.Yanagi, Y. & Tada, T. (1989). Polymorphism of T-cell receptor genes among laboratory and wild mice: diverse origin of laboratory mice. Immunogenetics 30, 405413.Google Scholar
Potter, M. & Liebermann, R. (1967). Genetics of immunoglobulins in the mouse. Advances in Immunology 7, 91145.Google Scholar
Redi, C. A.Garagna, S. Delia Valle, G.Bottiroli, G.Dell'Orto, P.Viale, G.Peverali, F. A.Raimondi, E. & Forejt, J. (1990). Differences in the organization and chromosomal allocation of satellite DNA between the European long-tailed house mice Mus domesticus and Mus musculus. Chromosoma 99, 1117.Google Scholar
Reichstein, H. (1978). In Handbuch der Saugetiere Europas (ed. Niethammer, J. and Krapp, F.), Vol. 1/5, pp. 421451. Wiesbaden: Akademische Verlagsgesellschaft.Google Scholar
Riblet, R. & Tutter, A. (1989). Evolution of the immunoglobulin heavy chain variable region (Igh-V) locus in the genus Mus. Immunogenetics 30, 315329.Google Scholar
Rindos, D. (1984). The Origins of Agriculture: An Evolutionary Perspective. New York: Academic Press.Google Scholar
Robinson, P. J.Steinmetz, M.Moriwaki, K. & Fischer, Lindahl K. (1984). Beta-2 microglobulin types in mice of wild origin. Immunogenetics 20, 655665.CrossRefGoogle ScholarPubMed
Rohme, D.Fox, H.Herrmann, B.Frischauf, A.-M.Edstron, J.-E.Mains, P.Silver, L. M. & Lehrach, H. (1984). Molecular cloning of the mouse t complex derived from microdissected metaphase chromosomes. Cell 36, 783788.CrossRefGoogle Scholar
Rosen, L.Bullard, D. & Schimenti, J. (1990). Molecular cloning of the t complex responder genetic locus. Genomics 8, 134140.CrossRefGoogle Scholar
Ruvinsky, A.Polyakov, A.Agulnik, A.Tichy, H.Figueroa, F. & Klein, J. (1991). Low diversity of t haplotypes in the Eastern form of the house mouse, Mus musculus L. Genetics 127, 161168.Google Scholar
Sage, R. D. (1981). Wild mice. In The Mouse in Biomedical Research, vol. I (ed. Foster, H. L.Small, J. D. & Fox, J. G.). New York: Academic Press.Google Scholar
Sage, R. D.Whitney, J. B. & Wilson, A. C. (1986). Genetic analysis of a hybrid zone between domesticus and musculus mice (Mus musculus complex): hemoglobin polymorphisms. Current Topics in Microbiology and Immunology 127, 7585.Google ScholarPubMed
Sarvetnick, N.Fox, H.Mann, E.Mains, P.Elliot, R. & Lee, L. M. (1986). Nonhomologous pairing in mice heterozygous for a t haplotype can produce recombinant chromosomes with duplications and deletions. Genetics 113, 723734.CrossRefGoogle Scholar
Schimenti, J.Void, L.Socolow, D. & Silver, L. M. (1987). An unstable family of large DNA elements in the center of the mouse t complex. Journal of Molecular Biology 194, 583594.CrossRefGoogle Scholar
Schwarz, E. & Schwarz, H. K. (1943). The wild and commensal stocks of the house mouse, Mus musculus Linnaeus. Journal of Mammalogy 24, 5972.Google Scholar
Selander, R. K.Hunt, W. G. & Yang, S. Y. (1969). Protein polymorphism and genie heterozygosity in two European subspecies of the house mouse. Evolution 23, 379390.Google Scholar
Sertic, J.Zaleska-Rutczynska, Z.Vincek, V.Nadeau, J.Figueroa, F. & Klein, J. (1992). Mapping of six DNA markers on mouse chromosome 17. Mammalian Genome 2, 138142.CrossRefGoogle ScholarPubMed
Silver, L. M. (1985). Mouse t haplotypes. Annual Review of Genetics 19, 179208.Google Scholar
Silver, L. M. & Artzt, K. (1981). Recombination suppression of mouse t haplotypes due to chromatin mismatching. Nature 290, 6870.CrossRefGoogle ScholarPubMed
Silver, L. M.Hammer, M.Fox, H.Garrels, J.Bucan, M.Herrmann, B.Frischauf, A.-M.Lehrach, H.Winking, H.Figueroa, F. & Klein, J. (1987). Molecular evidence for a rapid propagation of mouse t haplotypes from a single, recent, ancestral chromosome. Molecular Biology and Evolution 4, 473482.Google ScholarPubMed
Suzuki, H.Miyashita, N.Moriwaki, K.Kominami, R.Muramatsu, M.Kanahisa, T.Bonhomme, F.Petras, M. L.Yu, Z. & Lu, D. (1986). Evolutionary implication of heterogeneity of the nontranscribed spacer region of ribosomal DNA repeating units in various subspecies of Mus musculus. Molecular Biology and Evolution 3, 126137.Google ScholarPubMed
Tchernov, E. (1968). Succession of Rodent Faunas during the Upper Pleistocene of Israel. Hamburg: Mammalia Depicta. Verlag Paul Parey.Google Scholar
Tucker, P. K.Lee, B. K. & Eicher, E. M. (1989). Y chromosome evolution in the subgenus Mus (genus Mus). Genetics 122, 169179.Google Scholar
Uehara, H.Ebersole, T.Bennett, D. & Artzt, K. (1990). Submegabase clusters of instable tandem repeats unique to the 77a region of mouse t haplotypes. Genetics 126, 10931102.Google Scholar
Vanlerberghe, F.Bourst, P.Nielsen, J. T. & Bonhomme, F. (1988). A steep cline for mitochondrial DNA in Danish mice. Genetical Research 52, 185193.Google Scholar
Vincek, V.Kawaguchi, H.Mizuno, K.Zaleska-Rutcyznska, Z.Kasahara, M.Forejt, J.Figueroa, F. & Klein, J. (1989). Linkage map of chromosome 17: Localization of 27 new DNA markers. Genomics 5, 773786.CrossRefGoogle ScholarPubMed
Vincek, V.Sertic, J.Zaleska-Rutczynska, Z.Figueroa, F. & Klein, J. (1990). Characterization of H-2 congenic strains using DNA markers. Immunogenetics 31, 4551.Google Scholar
Watanabe, T.Miyashita, N.Moriwaki, K. & Hilgers, J. (1987). Evolutionary relationships between laboratory mice and subspecies of Mus musculus based on the genetic study of pancreatic proteinase loci, Prt-1, Prt-2, Prt-3, and Prt-6. Biochemical Genetics 25, 239251.Google Scholar
Yonekawa, H.Moriwaki, K.Gotch, O.Hayashi, J. I.Watanabe, J.Miyashita, N.Petras, M. L. & Tagashira, Y. (1981). Evolutionary relationships among five subspecies of Mus musculus based on restriction enzyme cleavage maps of mitochondrial DNA. Genetics 98, 801816.Google Scholar
Yonekawa, H.Gotch, O.Tagashira, Y.Matsushima, Y.Shi, L.-LCho, W. S.Miyashita, N. & Moriwaki, K. (1986). ‘A hybrid origin of Japanese mice l Mus musculus molossinus’. Current Topics in Microbiology and Immunology 127, 6267.Google Scholar
Yonekawa, H.Moriwaki, K.Gotch, O.Miyashita, N.Matsushima, Y.Shi, L.Cho, W. S.Zhen, X.-L & Tagashira, Y. (1988). Hybrid origin of Japanese mice Mus musculus molossinus: evidence from restriction analysis of mitochondrial DNA. Molecular Biology and Evolution 5, 6378.Google Scholar
Zaleska-Rutczynska, Z. & Klein, J. (1977). Histocompatibility-2 system in wild mice. V. Serologic analysis of sixteen B10.W congenic lines. Journal of Immunology 119, 19031911.Google Scholar
Zimmermann, X. (1950). Zur Kenntnis der mitteleuropaischen Hausmause. Zoologisches Jahrbuch 78, 301322.Google Scholar