Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T06:20:23.761Z Has data issue: false hasContentIssue false

Genic differentiation and origin of Robertsonian populations of the house mouse (Mus musculus domesticus Rutty)

Published online by Cambridge University Press:  14 April 2009

Janice Britton-Davidian
Affiliation:
Institut des Sciences de l'Evolution, CNRS UA 327, USTL, Place Eugene Bataillon, 34060 Montpellier Cedex
Joseph H. Nadeau
Affiliation:
The Jackson Laboratory, Bar Harbor, Maine 04609, USA
Henri Croset
Affiliation:
Institut des Sciences de l'Evolution, CNRS UA 327, USTL, Place Eugene Bataillon, 34060 Montpellier Cedex
Louis Thaler
Affiliation:
Institut des Sciences de l'Evolution, CNRS UA 327, USTL, Place Eugene Bataillon, 34060 Montpellier Cedex
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper examines the relation between chromosomal and nuclear-gene divergence in 28 wild populations of the house mouse semi-species, Mus musculus domesticus, in Western Europe and North Africa. Besides describing the karyotypes of 15 of these populations and comparing them to those of 13 populations for which such information was already known, it reports the results of an electrophoretic survey of proteins encoded by 34 nuclear loci in all 28 populations. Karyotypic variation in this taxon involves only centric (or Robertsonian) fusions which often differ in arm combination and number between chromosomal races. The electrophoretic analysis showed that the amount of genic variation within Robertsonian (Rb) populations was similar to that for all-acrocentric populations, i.e. bearing the standard karyotype. Moreover, divergence between the two types of populations was extremely low. These results imply that centric fusions in mice have not modified either the level or the nature of genic variability. The genetic similarity between Rb and all-acrocentric populations is not attributed to the persistence of gene flow, since multiple fusions cause marked reproductive isolation. Rather, we attribute this extreme similarity to the very recent origin of chromosomal races in Europe. Furthermore, genic diversity measures suggest that geographically separated Rb populations have in situ and independent origins. Thus, Rb translocations are probably not unique events, but originated repeatedly. Two models are presented to explain how the rapid fixation of a series of chromosomal rearrangements can occur in a population without lowering variability in the nuclear genes. The first model assumes that chromosomal mutation rates are between 10−3 and 10−4 and that populations underwent a series of transient bottlenecks in which the effective population size did not fall below 35. In the second model, genic variability is restored following severe bottlenecks, through gene flow and recombination.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

References

Adolph, S. & Klein, J. (1981). Robertsonian variation in Mus musculus from Central Europe, Spain and Scotland. Journal of Heredity 72, 219221.CrossRefGoogle ScholarPubMed
Adolph, S. & Klein, J. (1983). Genetic variation of wild mouse populations in Southern Germany. I. Cytogenetic study. Genetical Research 41, 117134.CrossRefGoogle ScholarPubMed
Baker, R. J. & Bickham, J. W. (1986). Speciation by monobrachial centric fusions. Proceedings of the National Academy of Sciences, USA 83, 82458248.CrossRefGoogle ScholarPubMed
Berry, R. J. & Peters, J. (1977). Heterogeneous heterozygosities in Mus musculus populations. Proceedings of the Royal Society of London B 197, 485503.Google ScholarPubMed
Berry, R. J. & Peters, J. (1981). Allozymic variation in house mouse populations. In Mammalian Population Genetics (ed. Smith, M. H. and Joule, J.), pp. 242253. University of Georgia Press.Google Scholar
Bonhomme, F., Britton-Davidian, J., Thaler, L. & Trianta-phyllidis, C. (1978). Sur l'existence en Europe de quatre groupes de souris (genre Mus L.) du rang espèce et semi-espèce démontrée par la génétique biochimique. Comptes Rendus de l'Académie des Sciences, Paris 287, 631633.Google Scholar
Britton-Davidian, J. (1985). Différentiation génique et chromosomique chez les souris Mus musculus domesticus et Mus spretus. Relations avec la distribution spatiale des populations. Doctoral Thesis. USTL. Montpellier.Google Scholar
Britton-Davidian, J., Bonhomme, F., Croset, H., Capanna, E. & Thaler, L. (1980). Variabilité génétique chez les populations de souris (genre Mus L.) à nombre chromosomique réduit. Comptes Rendus de l'Académie des Sciences, Paris 290, 195198.Google Scholar
Brooker, P. C. (1982). Robertsonian translocations in Mus musculus from N.E. Scotland and Orkney. Heredity 48, 305309.CrossRefGoogle ScholarPubMed
Capanna, E. (1982). Robertsonian numerical variation in animal speciation: Mus musculus, an emblematic model. In Mechanisms of Speciation (ed. Barigozzi, C.), pp. 155177. New York: Alan R. Liss.Google Scholar
Capanna, E., Civitelli, M. V. & Cristaldi, M. (1977). Chromosomal rearrangement, reproductive isolation and speciation in mammals. The case of Mus musculus. Bolletino di Zoologia 44, 213246.CrossRefGoogle Scholar
Capanna, E., Corti, M. & Nascetti, G. (1985 a). Role of contact areas on chromosomal speciation of the European long-tailed house mouse (Mus musculus domesticus). Bolletino di Zoologia 52, 97119.Google Scholar
Capanna, E., Corti, M., Nascetti, G. & Bullini, L. (1985 b). Pre- and post-mating isolating mechanisms in the speciation of the European long-tailed house mouse Mus musculus domesticus. Acta Zoologica Fennica 170, 115120.Google Scholar
Cattanach, B. M. (1978). Crossover suppression in mice heterozygous for tobacco mouse metacentrics. Cytogenetics and Cell Genetics 20, 264281.CrossRefGoogle ScholarPubMed
Chesser, R. K. & Baker, R. J. (1986). On factors affecting the fixation of chromosomal rearrangements and neutral genes: computer simulations. Evolution 40, 625632.CrossRefGoogle ScholarPubMed
Corti, M., Capanna, E. & Estabrook, G. F. (1986). Microevolutionary sequences in house mouse chromosomal speciation. Systematic Zoology 35, 163175.CrossRefGoogle Scholar
Ferris, S. D., Sage, R. D., Prager, E. M., Ritte, U. & Wilson, A. C. (1983). Mitochondrial DNA evolution in mice. Genetics 105, 681721.CrossRefGoogle ScholarPubMed
Figueroa, F., Zaleska-Rutczynska, Z., Adolph, S., Nadeau, J. H. & Klein, J. (1982). Genetic variation of wild house mouse populations in Southern Germany. II. Serological study. Genetical Research 41, 135144.Google Scholar
Frykman, L., Simonsen, V. & Bengtsson, B. O. (1983). Genetic differentiation in Sorex. I. Electrophoretic analysis of the karyotypic races of Sorex araneus in Sweden. Hereditas 99, 279292.CrossRefGoogle ScholarPubMed
Futuyma, D. J. & Mayer, G. C. (1980). Non-allopatric speciation in animals. Systematic Zoology 29, 254271.CrossRefGoogle Scholar
Gropp, A. (1974). Animal model of human disease. American Journal of Pathology 77, 539542.Google Scholar
Gropp, A. & Kolbus, U. (1974). Exencephaly in the syndrome of trisomy n12 of the foetal mouse. Nature 249, 145147.CrossRefGoogle Scholar
Gropp, A. & Winking, H. (1981). Robertsonian translocations: cytology, meiosis, segregation pattern and biological consequences of heterozygosity. Symposium of the Zoological Society of London 47, 141181.Google Scholar
Gropp, A., Winking, H., Redi, C., Capanna, E., Britton-Davidian, J. & Noack, G. (1982). Robertsonian karyotype variation in wild house mice from Rhaeto-Lombardia. Cytogenetics and Cell Genetics 34, 6777.Google Scholar
Harris, H. & Hopkinson, D. A. (1976). Handbook of Enzyme Electrophoresis. Amsterdam: North-Holland Press.Google Scholar
Harris, M. J., Wallace, M. E. & Evans, E. P. (1986). Aneuploidy in the embryonic progeny of females heterozygous for the Robertsonian chromosome (9.12) in genetically wild Peru-Coppock mice (Mus musculus). Journal of Reproduction and Fertility 76, 193203.CrossRefGoogle ScholarPubMed
Hedrick, P. W. (1981). The establishment of chromosomal variants. Evolution 35, 322332.CrossRefGoogle ScholarPubMed
Janossy, D. (1961). Die Entwicklung der Kleinsaugerfauna Europas im Pleistozan (Insectivora, Rodentia, Lagomorpha). Zeitschrift für Saugertierkunde 26, 164.Google Scholar
Lande, R. (1979). Effective deme sizes during long-term evolution estimated from rates of chromosomal rearrangement. Evolution 33, 234251.CrossRefGoogle ScholarPubMed
Larson, A., Prager, E. M. & Wilson, A. C. (1984). Chromosomal evolution, speciation and morphological change in vertebrates: the role of social behaviour. Chromosomes Today 8, 215228.Google Scholar
Lee, M. R. & Elder, F. F. B. (1980). Yeast stimulation of bone marrow mitosis for cytogenetic investigation. Cytogenetics and Cell Genetics 26, 3640.CrossRefGoogle Scholar
Lewontin, R. C. (1972). The apportionment of human diversity. Evolutionary Biology 6, 381398.Google Scholar
Moriwaki, K., Yonekawa, H., Gotch, O., Minezawa, M., Winking, H. & Gropp, A. (1984). Implications of the genetic divergence between European wild mice with Robertsonian translocations from the viewpoint of mitochondrial DNA. Genetical Research 43, 277287.CrossRefGoogle ScholarPubMed
Mouse Newsletter. (1985). Mouse gene list. Volume 72: 2983.Google Scholar
Nadeau, J. H., Britton-Davidian, J., Bonhomme, B. & Thaler, L. (1988). H-2 polymorphisms are more uniformly distributed than allozyme polymorphisms in natural populations of the house mice. Genetics 118, 131140.CrossRefGoogle ScholarPubMed
Nadeau, J. H., Wakeland, E. K., Gotze, D. & Klein, K. (1981). The population genetics of the H-2 polymorphism in European and North African populations of the house mouse (Mus musculus L.). Genetical Research 37, 1731.Google Scholar
Nash, H. R., Brooker, P. C. & Davis, S. J. M. (1983). The Robertsonian translocation house mouse populations of North East Scotland: a study of their origin and evolution. Journal of Heredity 50, 303310.Google Scholar
Nei, M. (1971). Interspecific gene differences and evolutionary time estimated from electrophoretic data on protein identity. American Naturalist 105, 385398.Google Scholar
Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583590.CrossRefGoogle ScholarPubMed
Nei, M., Maruyama, T. & Chakraborty, R. (1975). The bottleneck effect and genetic variability in populations. Evolution 29, 110.Google Scholar
Nesbitt, M. N. & Francke, U. (1973). A system of nomenclature for band patterns of mouse chromosomes. Chromosoma 41, 145158.Google Scholar
Pasteur, N., Pasteur, G., Bonhomme, F., Catalan, J. & Britton-Davidian, J. (1987). Manuel d'électrophorèse appliquée à la génétique des populations. Paris: Editions Techniques et Documentation.Google Scholar
Patton, J. L. & Sherwood, S. W. (1983). Chromosome evolution and speciation in rodents. Annual Review of Ecology and Systematics 14, 139158.CrossRefGoogle Scholar
Qumsiyeh, M. B., Hamilton, M. J. & Schlitter, D. A. (1988). Problems in using Robertsonian rearrangements in determining monophyly: examples from the genera Tatera and Gerbillurus. Cytogenetics and Cell Genetics (In the Press).Google Scholar
Rogers, D. S., Greenbaum, I. F., Gunn, S. J. & Engstrom, M. D. (1984). Cytosystematic value of chromosomal inversion data in the genus Peromyscus (Rodentia: Cricetidae). Journal of Mammalogy 65, 457465.Google Scholar
Sage, R. D. (1981). Wild mice. In The Mouse in Biomedical Research vol. 1 (ed. Foster, H. L., Small, J. D. and Fox, J. G.), pp. 3990. New York: Academic Press.Google Scholar
Said, K., Jacquart, T., Montgelard, C., Sonjaya, H., Helal, A. N. & Britton-Davidian, J. (1986). Robertsonian house mouse populations in Tunisia: a karyotypical and biochemical study. Genetica 68, 151156.CrossRefGoogle Scholar
Seabright, M. (1971). A rapid banding technique for human chromosomes. The Lancet ii, 971972.CrossRefGoogle Scholar
Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E. & Gentry, J. B. (1971). IV. Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old-field mouse (Peromyscus polionotus). Studies in Genetics, University of Texas Publication 7103, 4990.Google Scholar
Shaw, D. D., Wilkinson, P. & Coates, D. J. (1983). Increased chromosomal mutation rate after hybridization between two subspecies of grasshoppers. Science 220, 11651167.CrossRefGoogle ScholarPubMed
Sirkkomaa, S. (1983). Calculations on the decrease of genetic variation due to the founder effect. Hereditas 99, 1120.Google Scholar
Sites, J. W. & Moritz, C. (1987). Chromosomal evolution and speciation revisited. Systematic Zoology 36, 153174.CrossRefGoogle Scholar
Spirito, F., Modesti, A., Perticone, P., Cristaldi, M., Federici, R. & Rizzoni, M. (1980). Mechanisms of fixation and accumulation of centric fusions in natural populations of Mus musculus L. I. Karyological analysis of a hybrid zone between two populations in the Central Apennines. Evolution 34, 453466.CrossRefGoogle Scholar
Spirito, F., Rossi, C. & Rizzoni, M. (1983). Reduction of gene flow due to the partial sterility of heterozygotes for a chromosome mutation. I. Studies of a ‘neutral’ gene not linked to the chromosome mutation in a two population model. Evolution 37, 785797.Google Scholar
Tichy, H. & Vucak, I. (1987). Chromosomal polymorphism in the house mouse (Mus domesticus) of Greece and Yugoslavia. Chromosoma 95, 3136.Google Scholar
Walsh, J. B. (1982). Rate of accumulation of reproductive isolation by chromosome rearrangements. American Naturalist 120, 510532.Google Scholar
White, M. J. D. (1968). Models of speciation. Science 159, 10651070.Google Scholar
White, M. J. D. (1978). Chain processes in chromosomal speciation. Systematic Zoology 27, 285298.Google Scholar
Wilson, A. C., Cann, R. L., Carr, S. M., George, M., Gyllensten, U. B., Helm-Bychowski, K. M., Higuchi, R. G., Palumbi, S. R., Prager, E. M., Sage, R. D. & Stoneking, M. (1985). Mitochondrial DNA and two perspectives on evolutionary genetics. Biological Journal of the Linnean Society 26, 375400.Google Scholar
Winking, H. (1986). Some aspects of Robertsonian karyo-type variation in European wild mice. In Current Topics in Microbiology and Immunology 127, 6874.Google Scholar
Winking, H. & Gropp, A. (1976). Meiotic non-disjunction of metacentric heterozygotes in oocytes versus spermatocytes. In Ovulation in the Human, Proceedings of the Serono Symposium vol. 8 (ed. Crosignani, P. G. and Mishell, D. R.), pp. 4756. Academic Press.Google Scholar
Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 9, 395420.Google Scholar