Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T12:40:19.772Z Has data issue: false hasContentIssue false

Larvae of Nauticaris magellanica (Decapoda: Caridea: Hippolytidae) reared in the laboratory differ morphologically from those in nature

Published online by Cambridge University Press:  19 September 2003

Ingo S. Wehrtmann*
Affiliation:
Universidad de Costa Rica, Escuela de Biología, 2060 San Pedro–San José, Costa Rica
Luis Albornoz
Affiliation:
Universidad Austral de Chile, Instituto de Zoología ‘Ernst F. Kilian’, Casilla 567, Valdivia, Chile
*
Corresponding author, e-mail: ingowehrtmann@gmx.de

Abstract

The variability of larval morphology in the caridean shrimp Nauticaris magellanica cultivated in the laboratory was analysed, and its applicability for the identification of larval stages collected from the plankton evaluated. Both morphometric and meristic variability of selected appendages was analysed comparing larvae from the rearing experiment with those obtained from the plankton. Larval development in the laboratory consisted of at least nine zoeal and five decapodid stages, followed by the first juvenile stage. Larvae collected from the plankton, comprising individuals from zoea II to, presumably, zoea VIII, were generally more developed and had a larger size than the corresponding stages reared in the laboratory. Cultured larvae showed a high exophenotypical variability starting with zoea IV, which impeded an immediate determination of larval stages obtained from the plankton.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albornoz, L. & Wehrtmann, I.S., 1996. Aspects of the reproductive biology of Petrolisthes laevigatus (Guerin, 1835) (Decapoda: Anomura: Porcellanidae). II. Description of the larval development, including the first crab stage, under laboratory condition. Archive of Fishery and Marine Research, 43, 137–157.Google Scholar
Boltovskoy, D., 1981. Atlas del zooplancton del Atläntico sudoccidentaly metodos de trabajo con el zooplancton marino. Mar del Plata, Argentina: INIDEP.Google Scholar
Boyd, C.M. & Johnson, M.W., 1963. Variations in the larval stages of a decapod crustacean, Pleuroncodes planipes Stimpson (Galatheidae). Biological Bulletin. Marine Biological Laboratory, Woods Hole, 124, 141–152.Google Scholar
Criales, M.M. & Anger, K., 1986. Experimental studies on the larval development of the shrimps Crangon crangon and C. allmanni. Helgola«nder Meeresuntersuchungen, 40, 241–265.Google Scholar
DeBrosse, G.A., Baldinger, A.J. & McLaughlin, P.A., 1989. A comparative study of the megalopal stages of Cancer oregonensis Dana and C. productus Randall (Decapoda: Brachyura: Cancridae) from the northeastern Pacific. Fishery Bulletin. National Oceanic and Atmospheric Administration. Washington, DC, 88, 39–49.Google Scholar
Diaz, H. & Bevilacqua, M., 1986. Larval development of Aratus pisonii (H. Milne Edwards) (Brachyura, Grapsidae) from marine and estuarine environments reared under different salinity conditions. Journal of Coastal Research, 2, 43–49.Google Scholar
Diaz, H. & Bevilacqua, M., 1987. Early developmental sequences of Aratus pisonii (H. Milne Edwards) (Brachyura, Grapsidae) under laboratory conditions. Journal of Coastal Research, 3, 63–70.Google Scholar
Felder, D.L., Martin, J.W. & Goy, J.W., 1985. Patterns in early postlarval development of decapods. In Crustacean Issues 2. Larval growth (ed. A.M. Wenner), pp. 163–225. Rotterdam: A.A. Balkema.Google Scholar
Fincham, A.A., 1979. Larval development of British prawns and shrimps (Crustacea: Decapoda: Natantia). 2. Palaemonetes (Palaemonetes) varians (Leach, 1814) and morphological variation. Bulletin of the British Museum of Natural History (Zoology), 35, 164–182.Google Scholar
Futuyma, D.J., 1979. Evolutionary biology. Sunderland, MA: Sinauer Associates, Inc. USA.Google Scholar
Guzman, P.G., 1996. Presencia y densidad de larvas de camarones (Decapoda, Caridea) en el plancton del sur de Chile. Thesis of Licenciatura, Escuela de Biologia Marina, Facultad de Ciencias, Univerdidad Austral de Chile, Valdivia.Google Scholar
Harms, J., Meyer-Harms, B., Dawirs, R.R. & Anger, K., 1994. Growth and physiology of Carcinus maenas (Decapoda, Portunidae) larvae in the field and in laboratory experiments. Marine Ecology Progress Series, 108, 107–118.Google Scholar
Hartnoll, R.G. & Dalley R., 1981. The control of size variation within instar of a crustacean. Journal of Experimental Marine Biology and Ecology, 53, 235–239.Google Scholar
Harvey, A.W., 1996. Delayed metamorphosis in Florida hermit crabs: multiple cues and constraints (Crustacea: Decapoda: Paguridae and Diogenidae). Marine Ecology Progress Series, 141, 27–36.CrossRefGoogle Scholar
Haynes, E.B., 1978. Description of larvae of a hippolytid shrimp Lebbeus groenlandicus, reared in situ in Kachemak Bay Alaska. Fishery Bulletin. National Oceanic and Atmospheric Administration. Washington, DC, 76, 457–465.Google Scholar
Haynes, E.B., 1981. Early zoeal stages of Lebbeus polaris, Eualus suckleyi, E. fabricii, Spirontocaris arcuata, S. ochotensis, and Heptacarpus camtschaticus (Crustacea: Decapoda: Caridea: Hippolytidae) and morphological characterization of zoeae of Spirontocaris and related genera. Fishery Bulletin. National Oceanic and Atmospheric Administration. Washington, DC, 79, 421–440.Google Scholar
Haynes, E.B., 1985. Morphological development, identification, and biology of larvae of Pandalidae, Hippolytidae, and Crangonidae (Crustacea, Decapoda) of the northern north Pacific Ocean. Fishery Bulletin. National Oceanic and Atmospheric Administration. Washington, DC, 83, 253–288.Google Scholar
Holthuis, L.B., 1952. Reports of the Lund University Chile Expedition 1948–49. 5. The Crustacea Decapoda Macrura of Chile. Lund Universitets —rsskrift, N F. Avd. 2, 47(10), 1–109.Google Scholar
Ingle, R., 1992. Larval stages of northeastern Atlantic crabs, 1st edn. London: Chapman & Hall.Google Scholar
Kaestner, A., 1970. Invertebrate zoology, 3rd edn. New York: Wiley.Google Scholar
Knowlton, R.E., 1974. Larval development processes and controlling factors in decapod Crustacea, with emphasis on Caridea. Thalassia Jugoslavica, 10, 138–158.Google Scholar
Kurata, H., 1960. Last stage zoea of Paralithodes with intermediate form between normal last stage zoea and glaucothoe. Bulletin of the Hokkaido Regional Fishery Research Laboratory, 22, 49–56.Google Scholar
Lang, W.H. & Young, A.M., 1977. The larval development of Clibanarius vitattus (Bosc) (Crustacea; Decapoda; Diogenidae) reared in the laboratory. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 152, 84–104.Google Scholar
Lardies, M. A., 1995. Variacio'n latitudinal en la biologia reproductiva de Betaeus truncatus (Decapoda: Alpheidae). Thesis, Escuela de Biologia Marina, Facultad de Ciencias, Univerdidad Austral de Chile, Valdivia.Google Scholar
Lardies, M.A. & Wehrtmann, I.S., 2001. Latitudinal variation in the reproductive biology of Betaeus truncatus (Decapoda: Alpheidae) along the Chilean coast. Ophelia, 55, 55–67.Google Scholar
McConaugha, J.R., 1982. Regulation of crustacean morphogenesis in larvae of the mud crab, Rhithropanopeus harrisii. Journal of Experimental Zoology, 223, 155–166.Google Scholar
McConaugha, J.R., 1985. Nutrition and growth. In Crustacean Issues 2. Larval growth (ed. A.M. Wenner), pp. 127–154. Rotterdam: A.A. Balkema.Google Scholar
Mene, L.J., 1987. Aspectos morfologicos de las fases larvarias de la necora, Liocarcinus puber. Boletin del Instituto Espanol de Oceanografia, 4, 61–68.Google Scholar
Montü, M., Anger, K. & de Bakker, C., 1990. Variability in the larval development of Metasesarma rubripes (Decapoda: Grapsidae), reared in the laboratory. Neritica, Pontal do Sul, 5, 113–128.Google Scholar
Montü, M., Anger, K. & de Bakker, C., 1996. Larval development of the Chinese mitten crab Eriocheir sinensis H. Milne Edwards (Decapoda: Grapsidae) reared in the laboratory. Helgola«nder Meeresuntersuchungen, 50, 223–252.Google Scholar
Pechenik, J.A., 1987. Environmental influences on larval survival and development. In Reproduction of marine invertebrates, vol. IX (ed. A.C. Giese et al.), pp. 551–608. Palo Alto and Pacific Grove, California: Blackwell Scientific Publications and the Boxwood Press.Google Scholar
Pechenik, J.A., 1990. Delayed metamorphosis by larvae of benthic marine invertebrates: does it occur? Is there a price to pay? Ophelia, 32, 63–94.Google Scholar
Pigliucci, M., 2001. Phenotypic plasticity beyond nature and nurture. Baltimore: The Johns Hopkins University Press.Google Scholar
Rodriguez, S.R., Ojeda, E.P. & Inestrosa, N.C., 1992. Settlement of benthic marine invertebrates. Marine Ecology Progress Series, 97, 193–207.Google Scholar
Sandifer, P.A. & Smith, T.I.J., 1979. Possible significance of variation in the larval development of palaemonid shrimp. Journal of Experimental Marine Biology and Ecology, 39, 55–64.CrossRefGoogle Scholar
Shirley, S.M., Shirley, T.C. & Rice, S.D., 1987. Latitudinal varia-tion in the Dungeness crab, Cancer magister: zoeal morphology explained by incubation temperature. Marine Biology, 95, 371–376.Google Scholar
Sokal, R.R. & Rohlf, F.J., 1981. Biometry. Theprinciples andpractice of statistics in biological research, 2nd edn. New York: W.H. Freeman & Company.Google Scholar
Sokal, R.R. & Sneath, P.H.A., 1963. Principles of numeric taxonomy. San Franscisco: W.H. Freeman & Company.Google Scholar
Thatje, S. & Bacardit, R., 2000. Morphological variability in larval stages of Nauticaris magellanica (A. Milne Edwards, 1891) (Decapoda: Caridea: Hippolytidae) from South American waters. Bulletin of Marine Science, 66, 375–398.Google Scholar
Travis, J., 1994. Evaluating the adaptive role of morphological plasticity. In Ecological morphology. Integrative organismal biology (ed. P.S. Wainwright and S.M. Reilly), pp. 99–122. Chicago: The University of Chicago Press.Google Scholar
Veloso, V.G. & Calazans, D.K., 1992. Descricäo dos estagios larvais de Emerita brasiliensis Schmitt, 1935 (Decapoda: Hippidae) obtidos de amostras do plâncton, Rio Grande do Sul. Neritica, Curitiba, 7, 133–145.Google Scholar
Villamar, D.F. & Brusca, G.J., 1988. Variation in the larval devel-opment of Crangon nigricauda (Decapoda: Caridea), with notes on larval morphology and behavior. Journal of Crustacean Biology, 8, 410–419.Google Scholar
Wehrtmann, I.S., 1991. How important are starvation periods in early larval development for survival of Crangon septemspinosa larvae? Marine Ecology Progress Series, 73, 183–190.Google Scholar
Wehrtmann, I.S. & Albornoz, L., 1998. Larval development of Nauticaris magellanica (A. Milne Edwards, 1891) (Decapoda: Caridea: Hippolytidae), reared under laboratory conditions. Bulletin of Marine Science, 62, 45–72.Google Scholar
Wehrtmann, I.S. & Carvacho, A., 1997. New records and distri-bution ranges of shrimps (Crustacea: Decapoda: Penaeoidea and Caridea) in Chilean waters. Proceedings of the Biological Society of Washington, 110, 49–57.Google Scholar
Wehrtmann, I.S. & Kattner, G., 1998. Changes in volume, biomass, and fatty acids of developing eggs in Nauticaris magellanica (Decapoda: Caridea): a latitudinal comparison. Journal of Crustacean Biology, 18, 413–422.Google Scholar
Wehrtmann, I.S. & Lopez, G., in press. Effects of temperature on the embryonic development and hatchling size of Betaeus emarginatus (Decapoda: Caridea: Alpheidae). Journal of Natural History. Google Scholar
Young, C.M. & Chia, F.-S., 1987. Abundance and distribution of pelagic larvae as influenced by predation behavior, and hydrographic factor. In Reproduction of marine invertebrates, vol. IX (ed. A.C. Giese et al.), pp. 385–463. Palo Alto and Pacific Grove, California: Blackwell Scientific Publications and the Boxwood Press.Google Scholar