Neuron Glia Biology

Research Article

Evaluating neuronal and glial growth on electrospun polarized matrices: bridging the gap in percussive spinal cord injuries

Woon N. Chowa1, David G. Simpsona1, John W. Bigbeea1 and Raymond J. Colelloa1 c1

a1 Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA


One of the many obstacles to spinal cord repair following trauma is the formation of a cyst that impedes axonal regeneration. Accordingly, we examined the potential use of electrospinning to engineer an implantable polarized matrix for axonal guidance. Polydioxanone, a resorbable material, was electrospun to fabricate matrices possessing either aligned or randomly oriented fibers. To assess the extent to which fiber alignment influences directional neuritic outgrowth, rat dorsal root ganglia (DRGs) were cultured on these matrices for 10 days. Using confocal microscopy, neurites displayed a directional growth that mimicked the fiber alignment of the underlying matrix. Because these matrices are generated from a material that degrades with time, we next determined whether a glial substrate might provide a more stable interface between the resorbable matrix and the outgrowing axons. Astrocytes seeded onto either aligned or random matrices displayed a directional growth pattern similar to that of the underlying matrix. Moreover, these glia-seeded matrices, once co-cultured with DRGs, conferred the matrix alignment to and enhanced outgrowth exuberance of the extending neurites. These experiments demonstrate the potential for electrospinning to generate an aligned matrix that influences both the directionality and growth dynamics of DRG neurites.

(Received February 02 2007)

(Revised March 02 2007)

(Accepted March 02 2007)


c1 Correspondence should be addressed to Raymond J. Colello, Department of Anatomy and Neurobiology, Virginia Commonwealth University, P.O. Box 980709, Richmond, Virginia 23298-0709, USA phone: +1 804 828 2262 fax: +1 804 827 0698 email: