Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T11:18:09.729Z Has data issue: false hasContentIssue false

Mapping the Distribution of Luminous and Dark Matter in Strong Lensing Galaxies

Published online by Cambridge University Press:  01 June 2007

Ignacio Ferreras*
Affiliation:
Dept. of Physics, King's College London, Strand, London WC2R 2LS, UK
Prasenjit Saha
Affiliation:
Institute for Theoretical Physics, University of Zürich, Winterthurerstr. 190, CH8057 Zürich, Switzerland
Liliya L. R. Williams
Affiliation:
Dept. of Physics, University of Minnesota, 116 Church St. SE, Minneapolis, MN55455, USA
Scott Burles
Affiliation:
Dept. of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA02139, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the distribution of luminous and dark matter in a set of strong lensing (early-type) galaxies. By combining two independent techniques – stellar population synthesis and gravitational lensing – we can compare the baryonic and dark matter content in these galaxies within the regions that can be probed using the images of the lensed background source. Two samples were studied, extracted from the CASTLES and SLACS surveys. The former probes a wider range of redshifts and allows us to explore the mass distribution out to ~ 5Re. The high resolution optical images of the latter (using HST/ACS) are used to show a pixellated map of the ratio between total and baryonic matter. We find dark matter to be absent in the cores of these galaxies, with an increasing contribution at projected radii RRe. The slopes are roughly compatible with an isothermal slope (better interpreted as an adiabatically contracted NFW profile), but a large scatter in the slope exists among galaxies. There is a trend suggesting most massive galaxies have a higher content of dark matter in the regions probed by this analysis.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bernstein, G. & Fischer, P. 1999, AJ 118, 14CrossRefGoogle Scholar
Bolton, A., et al. , 2006, ApJ 638, 703CrossRefGoogle Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS 344, 1000CrossRefGoogle Scholar
Cappellari, M., et al. , 2006, MNRAS 366, 1126CrossRefGoogle Scholar
Chabrier, G. 2003 PASP 115, 763CrossRefGoogle Scholar
Davies, R. L., et al. 2001 Ap.J.Lett. 548, L33CrossRefGoogle Scholar
Dekel, A., et al. 2005, Nature 437, 707CrossRefGoogle Scholar
Diego, J. M., et al. 2005, MNRAS 362, 1247CrossRefGoogle Scholar
Douglas, N. G., et al. 2002, PASP, 114, 1234CrossRefGoogle Scholar
Douglas, N. G., et al. 2007, ApJ, 664, 257CrossRefGoogle Scholar
Ferreras, I. & Silk, J. 2000, MNRAS, 316, 786CrossRefGoogle Scholar
Ferreras, I., Saha, P. & Williams, L. L. R. 2005, Ap.J.Lett. 623, L5CrossRefGoogle Scholar
Keeton, C. R. 2001, arXiv astro-ph/0102341Google Scholar
Keeton, C. R. & Winn, J. N. 2003, ApJ 590, 39CrossRefGoogle Scholar
Kochanek, C. S. 1991, ApJ 373, 354CrossRefGoogle Scholar
Koopmans, L. V. E. 2005, MNRAS 363, 1136CrossRefGoogle Scholar
Koopmans, L. V. E., et al. , 2006, ApJ 649, 599CrossRefGoogle Scholar
Larson, R. B. 1975, MNRAS 173, 671CrossRefGoogle Scholar
Larson, R. B. 2006, Rev.Mex.AA. 26, 55Google Scholar
Lintott, C. J., Ferreras, I. & Lahav, O. 2007, Ap.J. 648, 826CrossRefGoogle Scholar
Loewenstein, M. & Mushotzky, R. 2003, Nuc.Phys.S. 124, 91CrossRefGoogle Scholar
Mamon, G. A. & Lokas, E. L. 2005, MNRAS 363, 705CrossRefGoogle Scholar
O'Sullivan, E. & Ponman, T. 2004, MNRAS 354, 935CrossRefGoogle Scholar
Prieto, J. L. & Gnedin, O. Y. 2006, arXiv astro-ph/0608069Google Scholar
Romanowsky, A. J., et al. 2003, Science 301, 1696CrossRefGoogle Scholar
Romanowsky, A. J. 2006, arXiv astro-ph/0609251Google Scholar
Rusin, D., et al. 2003, ApJ 587, 143CrossRefGoogle Scholar
Saha, P. & Williams, L. L. R. 1997, MNRAS 292, 148CrossRefGoogle Scholar
Saha, P. & Williams, L. L. R. 2003, AJ 125, 2769CrossRefGoogle Scholar
Saha, P. & Williams, L. L. R. 2004, AJ 127, 2604CrossRefGoogle Scholar
Saha, P., Read, J. I. & Williams, L. L. R. 2006, ApJLett 652, L5CrossRefGoogle Scholar
Salpeter, E. E. 1955, ApJ 121, 161CrossRefGoogle Scholar
Schuberth, Y., et al. 2006, A&A 459, 391Google Scholar
Sofue, Y. & Rubin, V. 2001, ARA&A 39, 137Google Scholar
Spergel, D., et al. 2007, Ap.J.Suppl. 170, 377CrossRefGoogle Scholar
Suyu, S. H. & Blandford, R. D. 2006, MNRAS 366, 39CrossRefGoogle Scholar
Trager, S. C., et al. 2000, AJ 120, 165CrossRefGoogle Scholar
Trotter, C. S., Winn, J. N. & Hewitt, J. N. 2000, ApJ 535, 671CrossRefGoogle Scholar
Williams, L. L. R. & Saha, P. 2000, AJ 119, 439CrossRefGoogle Scholar
Young, P., et al. 1981, ApJ 244, 736CrossRefGoogle Scholar