Journal of Fluid Mechanics

Papers

Numerical investigation of particle–particle and particle–wall collisions in a viscous fluid

A. M. ARDEKANIa1 and R. H. RANGELa1

a1 Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697-3975, USA

Abstract

The dynamics of particle–particle collisions and the bouncing motion of a particle colliding with a wall in a viscous fluid is numerically investigated. The dependence of the effective coefficient of restitution on the Stokes number and surface roughness is analysed. A distributed Lagrange multiplier-based computational method in a solid–fluid system is developed and an efficient method for predicting the collision between particles is presented. A comparison between this method and previous collision strategies shows that the present approach has some significant advantages over them. Comparison of the present methodology with experimental studies for the bouncing motion of a spherical particle onto a wall shows very good agreement and validates the collision model. Finally, the effect of the coefficient of restitution for a dry collision on the vortex dynamics associated with this problem is discussed.

(Received February 02 2007)

(Revised October 23 2007)

Metrics