Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T18:34:43.024Z Has data issue: false hasContentIssue false

The structure of the accretion disk in NGC 4258

Published online by Cambridge University Press:  01 March 2007

James M. Moran
Affiliation:
Harvard-Smithsonian Center for Astrophysics† email: greenhill@cfa.harvard.edu
Elizabeth Humphreys
Affiliation:
Harvard-Smithsonian Center for Astrophysics† email: greenhill@cfa.harvard.edu
Lincoln Greenhill
Affiliation:
Harvard-Smithsonian Center for Astrophysics† email: greenhill@cfa.harvard.edu
Mark Reid
Affiliation:
Harvard-Smithsonian Center for Astrophysics† email: greenhill@cfa.harvard.edu
Alice Argon
Affiliation:
Harvard-Smithsonian Center for Astrophysics† email: greenhill@cfa.harvard.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A wealth of new information about the structure of the maser disk in NGC 4258 has been obtained from a series of 18 VLBA observations spanning three years, as well as from 32 additional epochs of spectral monitoring data from 1994 to the present, acquired with the VLA, Effelsberg, and GBT. The warp of the disk has been defined precisely. The thickness of the maser disk has been measured to be 12 micro-arcseconds (FWHM), which is slightly smaller than previously quoted upper limits. Under the assumption that the masers trace the true vertical distribution of material in the disk, from the condition of hydrostatic equilibrium the sound speed is 1.5 km s−1, corresponding to a thermal temperature of 600K. The accelerations of the high velocity maser components have been accurately measured for many features on both the blue and red side of the spectrum. The azimuthal offsets of these masers from the midline (the line through the disk in the plane of the sky) and derived projected offsets from the midline based on the warp model correspond well with the measured offsets. This result suggests that the masers are well described as discrete clumps of masing gas, which accurately trace the Keplerian motion of the disk. However, we have continued to search for evidence of apparent motions caused by “phase effects.” This work provides the foundation for refining the estimate of the distance to NGC 4258 through measurements of feature acceleration and proper motion. The refined estimate of this distance is expected to be announced in the near future.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Argon, A. L., Greenhill, L. J., Reid, M. J., Moran, J. M., & Humphreys, E. M. L. 2007, ApJ 659, 1040Google Scholar
Bragg, A. E., Greenhill, L. J., Moran, J. M., Henkel, C. 2000, ApJ 535, 73Google Scholar
Fruscione, A., Greenhill, L. J., Filippenko, A. V., Moran, J. M., Herrnstein, J. R., & Galle, E. 2005, ApJ 624, 103Google Scholar
Greenhill, L. J. 2004, New Astr. Rev. 48, 1079CrossRefGoogle Scholar
Greenhill, L. J., Henkel, C., Becker, R., Wilson, T. L., & Wouterloot, J. G. A. 1995, A&A 304, 21Google Scholar
Haschick, A. D. & Baan, W. A. 1990, ApJ (Letters) 355, L23CrossRefGoogle Scholar
Herrnstein, J. R., Moran, J. M., Greenhill, L. J., & Trotter, A. S. 2005, ApJ 629, 719Google Scholar
Herrnstein, J. R., Moran, J. M., Greenhill, L. J., Diamond, P. J., Inoue, M., Nakai, N., Miyoshi, M., Henkel, C., Riess, A., 1999, Nature 400, 539Google Scholar
Herrnstein, J. R., Greenhill, L. J., Moran, J. M., Diamond, P. J., Inoue, M., Nakai, N., & Miyoshi, M. 1998, ApJ (Letters) 497, L69Google Scholar
Herrnstein, J. R., Moran, J. M., Greenhill, L. J., Diamond, P. J., Nakai, N., & Inoue, M. 1997, ApJ (Letters) 475, L17Google Scholar
Herrnstein, J. R. 1997, PhD thesis, Harvard UniversityGoogle Scholar
Humphreys, E. M. L. et al. , 2007a, in preparationGoogle Scholar
Humphreys, E. M. L., Reid, M. J., Greenhill, L. J., Moran, J. M., & Argon, A. L. 2007b, ApJ, submittedGoogle Scholar
Humphreys, E. M. L., Argon, A. L., Greenhill, L. J., & Reid, M. J., Moran, J. M., 2004, Ap&SS 295, 285Google Scholar
Macri, L. M., Stanek, K. Z., Bersier, D., & Greenhill, L. J., Reid, M. J., 2007, ApJ 652, 1133Google Scholar
Maoz, E. & McKee, C. F. 1998, ApJ 494, 218CrossRefGoogle Scholar
Maoz, E. 1995, ApJ (Letters) 455, L131CrossRefGoogle Scholar
Modjaz, M., Moran, J. M., Kondratko, P. T., Greenhill, L. J. 2005, ApJ 626, 104CrossRefGoogle Scholar
Moran, J. M., Greenhill, L. J., & Herrnstein, J. R. 1999, JA&A 20, 165Google Scholar
Moran, J. M., Greenhill, L. J., Herrnstein, J. R., Diamond, P., Miyoshi, M., Nakai, N., & Inoue, M. 1995, Proc. Nat. Acad. Sci. 92, 11427Google Scholar
Statler, T. S. 2001, AJ 122, 2257Google Scholar
Yamauchi, A., Sato, N., Hirota, A., & Nakai, N. 2005, PASJ 57, 861Google Scholar