Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T06:57:52.079Z Has data issue: false hasContentIssue false

Vesicle trafficking during sporozoite development in Plasmodium berghei: ultrastructural evidence for a novel trafficking mechanism

Published online by Cambridge University Press:  02 October 2007

J. SCHREVEL
Affiliation:
Muséum National d'Histoire Naturelle, USM 504 Biologie fonctionnelle des Protozoaires, EA 3335, CP 52, 61 Rue Buffon, 75231 Paris Cedex 05, France
G. ASFAUX-FOUCHER
Affiliation:
Muséum National d'Histoire Naturelle, USM 504 Biologie fonctionnelle des Protozoaires, EA 3335, CP 52, 61 Rue Buffon, 75231 Paris Cedex 05, France
J. M. HOPKINS
Affiliation:
Department of Anatomy and Life Sciences, Wolfson CARD, Hodgkin Building, King's College London, Guy's Hospital Campus, London SE1 1UL, UK
V. ROBERT
Affiliation:
Muséum National d'Histoire Naturelle, USM 504 Biologie fonctionnelle des Protozoaires, EA 3335, CP 52, 61 Rue Buffon, 75231 Paris Cedex 05, France Institut de Recherche pour le Développement, UR 77 Paludologie afro-tropicale, 213 rue La Fayette, 75480 Paris cedex 10, France
C. BOURGOUIN
Affiliation:
Institut Pasteur, Centre for Production and Infection of Anopheles CEPIA, 28 rue du Dr Roux, 75724 Paris cedex 15, France
G. PRENSIER
Affiliation:
Laboratoire de Biologie Cellulaire et Microscopie Electronique, UFR Médecine, 10 Bd Tonnellé 37032 Tours cedex 1, France
L. H. BANNISTER*
Affiliation:
Department of Anatomy and Life Sciences, Wolfson CARD, Hodgkin Building, King's College London, Guy's Hospital Campus, London SE1 1UL, UK
*
*Corresponding author: Department of Anatomy and Life Sciences, Wolfson CARD, Hodgkin Building, Guy's Campus, King's College London, London SE1 1UL. Tel: +44 (0) 20 8653 3042. Fax: +44 (0) 20 7848 6569. E-mail: Lawrencelban@aol.com

Summary

Oocysts from Anopheles stephensi mosquitoes fed on murine blood infected with Plasmodium berghei berghei, were fixed for electron microscopy 6–12 days post-feeding. Ultrastructural analysis focused on Golgi-related trafficking pathways for rhoptry and microneme formation during sporogony. A small Golgi complex of 1–3 cisternae is formed close to the spindle pole body from coated vesicles budded from the nuclear envelope which is confluent with the endoplasmic reticulum. Rhoptries begin as small spheroidal bodies apparently formed by fusion of Golgi-derived vesicles, lengthening to 3–4 μm, and increasing in number to 4 per sporozoite. Ultrastructural data indicate the presence of a novel mechanism for vesicle transport between the Golgi complex and rhoptries along a longitudinal 30 nm – thick fibre (rootlet fibre or tigelle). Filamentous links between vesicles and rootlet indicate that this is a previously undescribed vesicle transport organelle. Genesis of micronemes occurs late in bud maturation and starts as spheroidal dense-cored vesicles (pro-micronemes), transforming to their mature bottle-like shape as they move apically. Filamentous links also occur between micronemes and subpellicular microtubules, indicating that as in merozoites, micronemes are trafficked actively along these structures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, M. (1971). Plasmodium: the fine structure of malarial parasites. Experimental Parasitology 30, 284320.CrossRefGoogle ScholarPubMed
Bannister, L. H., Hopkins, J. M., Dluzewski, A. R., Margos, G., Williams, I. T., Blackman, M. J., Kocken, C. H., Thomas, A. W. and Mitchell, G. H. (2003). Plasmodium falciparum apical membrane antigen 1 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during merozoite development. Journal of Cell Science 116, 38253834.CrossRefGoogle ScholarPubMed
Bannister, L. H., Hopkins, J. M., Fowler, R. E., Krishna, S. and Mitchell, G. H. (2000). Ultrastructure of rhoptry development in Plasmodium falciparum erythrocytic merozoites. Parasitology 121, 273287.CrossRefGoogle Scholar
Cochrane, A. H., Aikawa, M., Jeng, M. and Nussenzweig, R. S. (1976). Antibody-induced ultrastructural changes of malarial sporozoites. Journal of Immunology 116, 859867.CrossRefGoogle ScholarPubMed
Docampo, R., De Souza, W., Miranda, K., Rohloff, P. and Moreno, S. N. J. (2005). Acidocalcisomes – conserved from bacteria to man. Nature Reviews Microbiology 3, 251261.CrossRefGoogle ScholarPubMed
Etzion, Z., Murray, M. C. and Perkins, M. E. (1991). Isolation and characterization of rhoptries of Plasmodium falciparum. Molecular and Biochemical Parasitology 47, 5161.CrossRefGoogle ScholarPubMed
Florens, L., Washburn, M. P., Raine, J. D., Anthony, R. M., Grainger, M., Haynes, J. D., Moch, J. K., Muster, N., Sacci, J. B., Tabb, D. L., Witney, A. A., Wolters, D., Wu, Y., Gardner, M. J., Holder, A. A., Sinden, R. E., Yates, J. R. and Carucci, D. J. (2002). A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520526.CrossRefGoogle ScholarPubMed
Foussard, F., Leriche, M. A. and Dubremetz, J. F. (1991). Characterization of the lipid content of Toxoplasma gondii rhoptries. Parasitology 102, 367370.CrossRefGoogle ScholarPubMed
Garnham, P. C. C., Bird, R. G., Baker, J. R. and Bray, R. S. (1961). Electron microscope studies of motile stages of malaria parasites. II. The fine structure of the sporozoite of Laverania (=Plasmodium) falcipara. Transactions of the Royal Society of Tropical Medicine and Hygiene 55, 98102.CrossRefGoogle Scholar
Garnham, P. C. C., Bird, R. G. and Baker, J. R. (1963). Electron microscopic studies of motile stages of malarial parasites. IV. The fine structure of the sporozoite of four species of Plasmodium. Transactions of the Royal Society of Tropical Medicine and Hygiene 61, 5868.CrossRefGoogle Scholar
Hager, K. M., Striepen, B., Tilney, L. G. and Roos, D. (1999). The nuclear envelope serves as an intermediary between the ER and Golgi complex in the intracellular parasite Toxoplasma gondii. Journal of Cell Science 112, 26312638.CrossRefGoogle ScholarPubMed
Hall, N., Karras, M., Raine, J. D., Carlton, J. M., Kooij, T. W., Berriman, M., Florens, L., Janssen, C. S., Pain, A., Christophides, G. K., James, K., Rutherford, K., Harris, B., Harris, D., Churcher, C., Quail, M. A., Ormond, D., Doggett, J., Trueman, H. E., Mendoza, J., Bidwell, S. L., Rajandream, M. A., Carucci, D. J., Yates, J. R. III, Kafatos, F. C., Janse, C. J., Barrell, B., Turner, C. M., Waters, A. P. and Sinden, R. E. (2005). A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307, 8286.CrossRefGoogle ScholarPubMed
Hoppe, H. C., Ngo, H. M., Yang, M. and Joiner, K. A. (2000). Targeting to rhoptry organelles of Toxoplasma gondii involves evolutionarily conserved mechanisms. Nature Cell Biology 2, 449456.CrossRefGoogle ScholarPubMed
Karsten, V., Qi, H., Beckers, C. J. M., Reddy, A., Dubremetz, J.-F., Webster, P. and Joiner, K. A. (1998). The protozoan parasite Toxoplasma gondii targets proteins to dense granules and the vacuolar space using both conserved and unusual mechanisms. Journal of Cell Biology 141, 13231333.CrossRefGoogle ScholarPubMed
Khater, E. I., Sinden, R. E. and Dessens, J. T. (2004). A malaria membrane skeletal protein is essential for normal morphogenesis, motility, and infectivity of sporozoites. Journal of Cell Biology 167, 425432.CrossRefGoogle ScholarPubMed
Le Roch, K. G., Zhou, Y., Blair, P. L., Grainger, M., Moch, J. K., Haynes, J. D., De La Vega, P., Holder, A. A., Batalov, S., Carucci, D. J. and Winzeler, E. A. (2003). Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301, 15031508.CrossRefGoogle ScholarPubMed
Matuschewski, K. (2006). Vaccine development against malaria. Current Opinion in Immunology 18, 449457.CrossRefGoogle ScholarPubMed
Meis, J. F., Wismans, P. G., Jap, P. H., Lensen, A. H. and Ponnudurai, T. (1992). A scanning electron microscopic study of the sporogonic development of Plasmodium falciparum in Anopheles stephensi. Acta Tropica 50, 227236.CrossRefGoogle ScholarPubMed
Ménard, R., Sultan, A. A., Cortes, C., Altsuler, R., van Dijk, M. R., Janse, C. J., Waters, A. P., Nussenzweig, R. S. and Nussenzweig, V. (1997). Circumsporozoite protein is required for development of malaria sporozoites in mosquitoes. Nature, London 385, 336340.CrossRefGoogle ScholarPubMed
Nichols, B. A., Chiappino, M. L. and Pavesio, C. E. (1994). Endocytosis at the micropore of Toxoplasma gondii. Parasitology Research 80, 9198.CrossRefGoogle ScholarPubMed
Persson, C., Oliveira, G. A., Sultan, A. A., Bhanot, P., Nussenzweig, V. and Nardin, E. (2002). Cutting edge: a new tool to evaluate human pre-erythrocytic malaria vaccines: Rodent parasites bearing a hybrid Plasmodium falciparum circumsporozoite protein. Journal of Immunology 169, 66816685.CrossRefGoogle Scholar
Ruiz, F. A., Luo, S., Moreno, S. N. and Docampo, R. (2004). Polyphosphate content and fine structure of acidocalcisomes of Plasmodium falciparum. Microscopy and Microanalysis 10, 563567.CrossRefGoogle ScholarPubMed
Schrével, J., Asfaux-Foucher, G., and Bafort, J. M. (1977). Étude ultrastructurale des mitoses multiples au cours de la sporogonie du Plasmodium b. berghei. Journal of Ultrastructure Research 59, 332350.CrossRefGoogle Scholar
Sinden, R. E. and Garnham, P. C. C. (1973). A comparative study on the ultrastructure of Plasmodium sporozoites within the oocyst and salivary glands, with particular reference to the incidence of the micropore. Transactions of the Royal Society of Tropical Medicine and Hygiene 67, 631637.CrossRefGoogle Scholar
Sinden, R. E. and Matuschewski, K. (2005). The sporozoite. In Molecular Approaches to Malaria (ed. Sherman, I.), pp. 169190. ASM Press, Washington DC.Google Scholar
Sinden, R. E. and Strong, K. (1978). An ultrastructural study of the sporogonic development of Plasmodium falciparum in Anopheles gambiae. Transactions of the Royal Society of Tropical Medicine and Hygiene 72, 477491.CrossRefGoogle ScholarPubMed
Stewart, M. J., Schulman, S. and Vanderberg, J. P. (1985). Rhoptry secretion of membranous whorls by Plasmodium berghei sporozoites. Journal of Protozoology 32, 280283.CrossRefGoogle ScholarPubMed
Terzakis, J. A. (1968). Uranyl acetate, as a stain and a fixative. Journal of Ultrastructure Research 22, 168184.CrossRefGoogle Scholar
Terzakis, J. A., Sprinz, H. and Ward, R. A. (1967). The transformation of the Plasmodium gallinaceum oocyst in Aedes aegypti mosquitoes. Journal of Cell Biology 34, 311326.CrossRefGoogle ScholarPubMed
Thathy, V., Fujioka, H., Gantt, S., Nussenzweig, R., Nussenzweig, V. and Ménard, R. (2002). Levels of circumsporozoite protein in the Plasmodium oocyst determine sporozoite morphology. EMBO Journal 21, 15861596.CrossRefGoogle ScholarPubMed
Vanderberg, J. and Rhodin, J. (1967). Differentiation of nuclear and cytoplasmic fine structure during sporogonic development of Plasmodium berghei. Journal of Cell Biology 32, C7C10.CrossRefGoogle ScholarPubMed
Vanderberg, J., Rhodin, J. and Yoeli, M. (1967). Electron microscopic and histochemical studies of sporozoite formation in Plasmodium berghei. Journal of Protozoology 14, 82103.CrossRefGoogle Scholar
Waters, A. (2006). Malaria: new vaccines for old? Cell 124, 689.CrossRefGoogle ScholarPubMed
Cyrklaff, M., Kudryashev, M., Leis, A., Leonard, K., Baumeister, W., Ménard, R., Meissner, M. and Frischknecht, F. (2007). Cryoelectron tomography reveals periodic material at the inner side of subpellicular microtubules in apicomplexan parasites. Journal of Experimental Medicine 204, 12811287.CrossRefGoogle ScholarPubMed