Journal of Fluid Mechanics



Topological fluid mechanics of stirring


PHILIP L. BOYLAND a1, HASSAN AREF a2 and MARK A. STREMLER a2
a1 Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
a2 Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, IL 61801, USA

Abstract

A new approach to regular and chaotic fluid advection is presented that utilizes the Thurston–Nielsen classification theorem. The prototypical two-dimensional problem of stirring by a finite number of stirrers confined to a disk of fluid is considered. The theory shows that for particular ‘stirring protocols’ a significant increase in complexity of the stirred motion – known as topological chaos – occurs when three or more stirrers are present and are moved about in certain ways. In this sense prior studies of chaotic advection with at most two stirrers, that were, furthermore, usually fixed in place and simply rotated about their axes, have been ‘too simple’. We set out the basic theory without proofs and demonstrate the applicability of several topological concepts to fluid stirring. A key role is played by the representation of a given stirring protocol as a braid in a (2+1)-dimensional space–time made up of the flow plane and a time axis perpendicular to it. A simple experiment in which a viscous liquid is stirred by three stirrers has been conducted and is used to illustrate the theory.

(Received April 8 1997)
(Revised March 9 1999)



Metrics
Related Content