Journal of Fluid Mechanics



Properties of large-amplitude internal waves


JOHN GRUE a1, ATLE JENSEN a1, PER-OLAV RUSÅS a1 and J. KRISTIAN SVEEN a1
a1 Mechanics Division, Department of Mathematics, University of Oslo, Norway

Abstract

Properties of solitary waves propagating in a two-layer fluid are investigated comparing experiments and theory. In the experiments the velocity field induced by the waves, the propagation speed and the wave shape are quite accurately measured using particle tracking velocimetry (PTV) and image analysis. The experiments are calibrated with a layer of fresh water above a layer of brine. The depth of the brine is 4.13 times the depth of the fresh water. Theoretical results are given for this depth ratio, and, in addition, in a few examples for larger ratios, up to 100[ratio]1. The wave amplitudes in the experiments range from a small value up to almost maximal amplitude. The thickness of the pycnocline is in the range of approximately 0.13–0.26 times the depth of the thinner layer. Solitary waves are generated by releasing a volume of fresh water trapped behind a gate. By careful adjustment of the length and depth of the initial volume we always generate a single solitary wave, even for very large volumes. The experiments are very repeatable and the recording technique is very accurate. The error in the measured velocities non-dimensionalized by the linear long wave speed is less than about 7–8% in all cases. The experiments are compared with a fully nonlinear interface model and weakly nonlinear Korteweg–de Vries (KdV) theory. The fully nonlinear model compares excellently with the experiments for all quantities measured. This is true for the whole amplitude range, even for a pycnocline which is not very sharp. The KdV theory is relevant for small wave amplitude but exhibit a systematic deviation from the experiments and the fully nonlinear theory for wave amplitudes exceeding about 0.4 times the depth of the thinner layer. In the experiments with the largest waves, rolls develop behind the maximal displacement of the wave due to the Kelvin–Helmholtz instability. The recordings enable evaluation of the local Richardson number due to the flow in the pycnocline. We find that stability or instability of the flow occurs in approximate agreement with the theorem of Miles and Howard.

(Received April 28 1998)
(Revised August 17 1998)



Metrics