Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T16:49:20.225Z Has data issue: false hasContentIssue false

Category fluency in first-episode schizophrenia

Published online by Cambridge University Press:  25 February 2003

Giovannetti Tania*
Affiliation:
Moss Rehabilitation Research Institute, Philadelphia, Pennsylvania
Goldstein Rita Z.
Affiliation:
Brookhaven National Laboratories, Upton, New York
Schullery Matthew
Affiliation:
Widner University, Chester, Pennsylvania
Barr William B.
Affiliation:
NYU Comprehensive Epilepsy Center, New York, New York
Bilder Robert M.
Affiliation:
Research Department, Hillside Hospital division of the North Shore-Long Island Jewish Health System, Glen Oaks, New York
*
Reprint requests to: Tania Giovannetti, Ph.D., Moss Rehabilitation Research Institute, Korman Building, Suite 203B, 1200 West Tabor Road, Philadelphia, PA 19141. E-mail: Giovannt@einstein.edu

Abstract

Animal word list generation (ANWLG) was administered to 47 first-episode schizophrenia (FES) participants and 31 controls. Fifty-nine left temporal lobe epilepsy (LTLE) participants were included as a comparison group with known temporal lobe damage and expected semantic deficits. Semantic knowledge was assessed with the Association Index (AI), a measure of the semantic relatedness of all consecutive ANWLG responses. Neuropsychological tests of language and executive functioning were also administered. Results showed that both FES and LTLE groups generated fewer ANWLG responses than controls, but only the LTLE participants obtained a lower AI relative to controls. FES participants did not differ from controls on the AI. FES and LTLE groups produced fewer semantic subcategories (clusters), however, only the LTLE group produced fewer words per subcategory compared to controls (cluster size). FES participants produced a higher rate of perseverative responses compared to the other groups. Finally, correlation analyses showed that for FES participants both executive and language tests significantly correlated with ANWLG total responses, while the correlation between ANWLG and only 1 language test was significant for LTLE participants. Taken together, the results suggest that reduced ANWLG output in FES participants may be best conceptualized as a deficit in the executive component of word list generation (i.e., semantic search/access, response monitoring) or global cognitive impairment. (JINS, 2003, 9, 384–393.)

Type
Research Article
Copyright
Copyright © The International Neuropsychological Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, H.A., Liddle, P.F., & Frith, C.D. (1993). Negative features, retrieval processes and verbal fluency in schizophrenia. British Journal of Psychiatry, 163, 769–775.CrossRefGoogle Scholar
Aloia, M.S., Gourovitch, M.L., Weinberger, D.R., & Goldberg, T.E. (1996). An investigation of semantic space in patients with schizophrenia. Journal of the International Neuropsychological Society, 2, 267–273.10.1017/S1355617700001272CrossRefGoogle Scholar
American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: Author.Google Scholar
Barr, W.B., Bilder, R.M., Goldberg, E., Kaplan, E., & Mukhergee, S. (1989). The neuropsychology of schizophrenic speech. Journal of Communication Disorders, 22, 327–349.10.1016/0021-9924(89)90009-9CrossRefGoogle Scholar
Bell, B.D., Hermann, B.P., Woodard, A.R., Jones, J.E., Rutecki, P.A., Sheth, R., Dow, C.C., & Seidenberg, M. (2001). Object naming and semantic knowledge in temporal lobe epilepsy. Neuropsychology, 15, 434–443.10.1037/0894-4105.15.4.434CrossRefGoogle Scholar
Benton, A.L. & Hamsher, K. deS. (1978). Multilingual Aphasia Examination. Iowa City: University of Iowa.Google Scholar
Bilder, R.M., Bogerts, B., Ashtari, M., Wu, H., Alvir, J.M., Jody, D., Reiter, G., Bell, L., & Lieberman, J.A. (1995). Anterior hippocampal volume reductions predict “frontal lobe” dysfunction in first episode schizophrenia. Schizophrenia Research, 17, 47–58.10.1016/0920-9964(95)00028-KCrossRefGoogle Scholar
Bilder, R.M. & Goldberg, E. (1987). Motor perseverations in schizophrenia. Archives of Clinical Neuropsychology, 2, 195–214.10.1093/arclin/2.3.195CrossRefGoogle Scholar
Bilder, R.M., Goldman, R.S., Robinson, D., Reiter, G., Bell, L., Bates, J.A., Pappadopulos, E., Willson, D.F., Alvir, J., Woerner, M.G., Geisler, S., Kane, J.M., & Lieberman, J.A. (2000). Neuropsychology of first episode schizophrenia: Initial characterization and clinical correlates. American Journal of Psychiatry, 157, 549–559.10.1176/appi.ajp.157.4.549CrossRefGoogle Scholar
Bilder, R.M., Lipschutz-Broch, L., Reiter, G., Geisler, S., Mayerhoff, D., & Lieberman, J.A. (1991). Neuropsychological deficits in the early course of first episode schizophrenia. Schizophrenia Research, 5, 198–199.10.1016/0920-9964(91)90071-XCrossRefGoogle Scholar
Bilder, R.M., Lipschutz-Broch, L., Reiter, G., Geisler, S.H., Mayerhoff, D.I., & Lieberman, J.A. (1992). Intellectual deficits in first-episode schizophrenia: Evidence for progressive deterioration. Schizophrenia Bulletin, 18, 437–448.10.1093/schbul/18.3.437CrossRefGoogle Scholar
Chan, A.S., Butters, N., Paulsen, J.S., Salmon, D.P., Swenson, M.R., & Maloney, L.T. (1993). An assessment of the semantic network in patients with Alzheimer's disease. Journal of Cognitive Neuroscience, 5, 254–261.10.1162/jocn.1993.5.2.254CrossRefGoogle Scholar
Chertkow, H., Bub, D., Deaudon, C., & Whitehead, V. (1997). On the status of object concepts in aphasia. Brain and Language, 58, 203–232.10.1006/brln.1997.1771CrossRefGoogle Scholar
Crider, A. (1997). Perseveration in schizophrenia. Schizophrenia Bulletin, 23, 63–74.CrossRefGoogle Scholar
DeRenzi, E. & Falgoni, P. (1978). Normative data and screening power of a shortened version of the Token Test. Cortex, 14, 41–49.CrossRefGoogle Scholar
Friedman, J.I., Harvey, P.D., Kemether, E., Byne, W., & Davis, K. (1999). Cognitive and functional changes with aging in schizophrenia. Biological Psychiatry, 46, 921–928.10.1016/S0006-3223(99)00080-3CrossRefGoogle Scholar
Frith, C.D. (1992). The cognitive neuropsychology of schizophrenia. Hove, UK: Erlbaum.Google Scholar
Garrard, P., Perry, R., & Hodges, J. (1997). Disorders of semantic memory. Journal of Neurology, Neurosurgery and Psychiatry, 62, 431–435.10.1136/jnnp.62.5.431CrossRefGoogle Scholar
Giovannetti-Carew, T., Lamar, M., Cloud, B.S., Grossman, M., & Libon, D.J. (1997). Impairment in category fluency in ischemic vascular dementia. Neuropsychology, 11, 400–412.10.1037/0894-4105.11.3.400CrossRefGoogle Scholar
Gold, J.M., Blaxton, T.A., Hermann, B.P., Randolph, C., Fedio, P., Goldberg, T.E., Theodore, W.H., & Weinberger, D.R. (1994). Memory and intelligence in lateralized temporal lobe epilepsy and schizophrenia. Schizophrenia Research, 17, 59–65.10.1016/0920-9964(95)00030-PCrossRefGoogle Scholar
Goldberg, T.E., Aloia, M.S., Gourovitch, M.L., Missar, D., Pickar, D., & Weinberger, D.R. (1998). Cognitive substrates of thought disorder, I: The semantic system. American Journal of Psychiatry, 155, 1671–1676.10.1176/ajp.155.12.1671CrossRefGoogle Scholar
Goldstein, R.Z., Giovannetti, T., Schullery, M., Zuffante, P.A., Lieberman, J.A., Robinson, D.G., Barr, W.B., & Bilder, R.M. (2002). Predicting formal thought disorder from semantic vs. executive dysfunction in first-episode schizophrenia. Journal of Neuropsychology, Neuropsychiatry and Behavioral Neurology, 15, 88–89.Google Scholar
Gourovitch, M.L., Goldberg, T.E., & Weinberger, D.R. (1996). Verbal fluency deficits in patients with schizophrenia: Semantic fluency is differentially impaired as compared with phonologic fluency. Neuropsychology, 10, 573–577.CrossRefGoogle Scholar
Grant, D.A. & Berg, E.A. (1948). A behavioral analysis of the degree of reinforcement and ease of shifting to new responses in a Weigl-type card sorting problem. Journal of Experimental Psychology, 38, 404–411.10.1037/h0059831CrossRefGoogle Scholar
Gruenewald, P.J. & Lockhead, G.R. (1980). The free recall of category examples. Journal of Experimental Psychology: Human Learning and Memory, 6, 225–240.Google Scholar
Hart, J. & Gordon, B. (1990). Delineation of single-word semantic comprehension deficits in aphasia, with anatomical correlation. Annals of Neurology, 27, 226–231.10.1002/ana.410270303CrossRefGoogle Scholar
Helmstaedter, C., Gleissner, U., Di Perna, M., & Elger, C.E. (1997). Relational verbal memory processing in patients with temporal lobe epilepsy. Cortex, 33, 667–678.10.1016/S0010-9452(08)70724-XCrossRefGoogle Scholar
Joyce, E.M., Collinson, S.L., & Crichton, P. (1996). Verbal fluency in schizophrenia: Relationship with executive function, semantic memory and clinical alogia. Psychological Medicine, 26, 39–49.10.1017/S0033291700033705CrossRefGoogle Scholar
Kaplan, E., Goodglass, H., & Weintraub, S. (1983). The Boston Naming Test (2nd ed.). Philadelphia: Lea & Febiger.Google Scholar
Laws, K.R. (1999). A meta-analytic review of Wisconsin Card Sort studies in schizophrenia: General intellectual deficit in disguise? Cognitive Neuropsychiatry, 4, 1–30.CrossRefGoogle Scholar
Lieberman, J.A., Alvir, J.M., Woerner, M., Degreef, G., Bilder, R.M., Ashtari, M., Bogerts, B., Mayerhoff, D.I., Geisler, S.H., Loebel, A., Levy, D.L., Hinrichsen, G., Szymanski, S., Chakos, M., Koreen, A., Borenstein, M., & Kane, J.M. (1992). Prospective study of psychobiology in first-episode schizophrenia at Hillside hospital. Schizophrenia Bulletin, 18, 351–371.CrossRefGoogle Scholar
Lieberman, J.A., Jody, D., Alvir, J.M., Ashtari, M., Levy, D.L., Bogerts, B., Degreef, G., Mayerhoff, D.I., & Cooper, T. (1993b). Brain morphology, dopamine, and eye-tracking abnormalities in first-episode schizophrenia. Archives of General Psychiatry, 50, 357–368.Google Scholar
Lieberman, J.A., Jody, D.N., Geisler, S.H., Alvir, J.M., Loebel, A., Szymanski, S., Woerner, M., & Borenstein, M. (1993a). Time course and biologic correlates of treatment response in first-episode schizophrenia. Archives of General Psychiatry, 50, 369–376.Google Scholar
McKay, A.P., McKenna, P.J., Bentham, P., Mortimer, A.M., Holbery, & A., Hodges J.R. (1996). Semantic memory is impaired in schizophrenia. Biological Psychiatry, 39, 929–937.10.1016/0006-3223(95)00250-2CrossRefGoogle Scholar
Moelter, S.T., Hill, S.K., Ragland, J.D., Lunardelli, A., Gur, R.C., Gur, R.E., & Moberg, P.J. (2001). Executive and semantic system impairment during animal word list generation in schizophrenia. Neuropsychology, 15, 502–509.10.1037/0894-4105.15.4.502CrossRefGoogle Scholar
Mohamed, S., Paulsen, J.S., O'Leary, D., Arndt, S., & Andreasen, N. (1999). Generalized cognitive deficits in schizophrenia: A study of first-episode patients. Archives of General Psychiatry, 56, 749–754.10.1001/archpsyc.56.8.749CrossRefGoogle Scholar
Papps, B.P., Best, J.J.K., & O'Carroll, R.E. (2000). Semantic memory functioning and the left temporal lobe. Neurocase, 6, 179–192.CrossRefGoogle Scholar
Paulsen, J.S., Romero, R., Chan, A., Davis, A.V., Heaton, R.K., & Jeste, D.V. (1996). Impairment of the semantic network in schizophrenia. Psychiatry Research, 63, 109–121.CrossRefGoogle Scholar
Paulsen, J.S., Heaton, R.K., Sadek, J.R., Perry, W., Delis, D.C., Braff, D., Kuck, J., Zisook, S., & Jeste, D.V. (1995). The nature of learning and memory impairments in schizophrenia. Journal of the International Neuropsychological Society, 1, 88–99.10.1017/S135561770000014XCrossRefGoogle Scholar
Perry, W. & Braff, D.L. (1998). A multimethod approach to assessing perseverations in schizophrenia patients. Schizophrenia Research, 33, 69–78.10.1016/S0920-9964(98)00061-9CrossRefGoogle Scholar
Rossell, S.L., Rabe-Hesketh, S., Shapleske, J., & David, A.S. (1999). Is semantic fluency differentially impaired in schizophrenia patients with delusions? Journal of Clinical and Experimental Neuropsychology, 21, 629–642.CrossRefGoogle Scholar
Robert, P.H., Lafont, V., Medecin, I., Berthet, L., Thauby, S., Baudu, C., & Darcourt, G. (1998). Clustering and switching strategies in verbal fluency tasks: Comparison between schizophrenics and healthy adults. Journal of the International Neurological Society, 4, 539–546.CrossRefGoogle Scholar
Robinson, D., Woerner, M.G., Alvir, J.M., Bilder, R., Goldman, R., Geisler, S., Koreen, A., Sheitman, B., Chakos, M., Mayerhoff, D., & Lieberman, J.A. (1999a). Predictors of relapse following response from a first episode of schizophrenia or schizoaffective disorder. Archives of General Psychiatry, 56, 241–247.10.1001/archpsyc.56.3.241CrossRefGoogle Scholar
Robinson, D., Woerner, M.G., Alvir, J.M., Geisler, S., Koreen, A., Sheitman, B., Chakos, M., Mayerhoff, D., Bilder, R., Goldman, R., & Lieberman, J.A. (1999b). Predictors of treatment response from a first episode of schizophrenia or schizoaffective disorder. American Journal of Psychiatry, 156, 544–549.10.1001/archpsyc.56.3.241CrossRefGoogle Scholar
Seidman, L.J., Stone, W.S., Jones, R., Harrison, R.H., & Mirsky, A.F. (1998). Comparative effects of schizophrenia and temporal lobe epilepsy on memory. Journal of the International Neuropsychological Society, 4, 342–352.CrossRefGoogle Scholar
Spitzer, R.L., Endicott, J., & Robins, E. (1978). Research Diagnostic Criteria: Rationale and reliability. Archives of General Psychiatry, 35, 773–782.CrossRefGoogle Scholar
Spreen, O. & Benton, A.L. (1969). Neurosensory Center Comprehensive Examination for Aphasia. Victoria, British Columbia, Canada: Neuropsychological Laboratory Department of Psychology, University of Victoria.Google Scholar
Tröster, A.I., Warmflash, V., Osorio, I., Paolo, A.M., Alexander, L.J., & Barr, W.B. (1995). The roles of semantic networks and search efficiency in verbal fluency performance in intractable temporal lobe epilepsy. Epilepsy Research, 21, 19–26.CrossRefGoogle Scholar
Troyer, A.K. (2000). Normative data for clustering and switching on verbal fluency tasks. Journal of Clinical and Experimental Neuropsychology, 22, 370–378.10.1076/1380-3395(200006)22:3;1-V;FT370CrossRefGoogle Scholar
Troyer, A.K., Moscovitch, M., & Winocur, G. (1997). Clustering and switching as two components of verbal fluency: Evidence from younger and older healthy adults. Neuropsychology, 11, 138–146.10.1037/0894-4105.11.1.138CrossRefGoogle Scholar
Troyer, A.K., Moscovitch, M., Winocur, G., Alexander, M.P., & Stuss, D. (1998a). Clustering and switching on verbal fluency: The effects of focal frontal- and temporal-lobe lesions. Neuropsychologia, 36, 499–504.10.1016/S0028-3932(97)00152-8CrossRefGoogle Scholar
Troyer, A.K., Moscovitch, M., Winocur, G., Leach, L., & Freedman, M. (1998b). Clustering and switching on verbal fluency tests in Alzheimer's and Parkinson's disease. Journal of the International Neuropsychological Society, 4, 137–143.10.1017/S1355617798001374CrossRefGoogle Scholar
Warrington, E.K. & Shallice, T. (1979). Semantic access dyslexia. Brain, 102, 43–63.CrossRefGoogle Scholar
Wechsler, D. (1987). Wechsler Adult Intelligence Scale–Revised. San Antonio, TX: The Psychology Corporation.Google Scholar
Zakzanis, K.K., Troyer, A.K., Rich, J.B., & Heinrichs, W. (2000). Component analysis of verbal fluency in patients with schizophrenia. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 13, 239–245.Google Scholar