Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-20T01:26:55.345Z Has data issue: false hasContentIssue false

The implications of close binary stars for star-disk interactions

Published online by Cambridge University Press:  01 May 2007

Robert D. Mathieu*
Affiliation:
Department of Astronomy, University of Wisconsin – Madison, WI 53706USA email: mathieu@astro.wisc.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The presence of close (≲ 0.1 AU) stellar companions must greatly alter the circumstellar environment of classical T Tauri stars, including severe truncation if not elimination of circumstellar disks. It is thus remarkable how little impact the presence of a close companion has on our observable diagnostics for accretion and outflow. Emission line shapes, degrees of continuum veiling, and spectral energy distributions are all indistinguishable between single classical T Tauri stars and classical T Tauri close binaries. Some of the most classical T Tauri stars that laid the foundation for our single-star accretion-disk paradigm have turned out to have close companions. Periodicities in spectral signatures are suggestive of the presence of accretion flows from circumbinary disks to the circumstellar regions; the subsequent flow of material through the circumstellar region to the stellar surface in the presence of a stellar magnetosphere is unstudied. Observations of stellar rotation distributions in close binaries suggest that inner disk regions may act to regulate stellar angular momentum.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Alencar, S. H. P., Melo, C. H. F., Dullemond, C. P., Andersen, J., Batalha, C., Vaz, L. P. R., & Mathieu, R. D. 2003, A&A, 409, 1037Google Scholar
Artymowicz, P. & Lubow, S. H. 1996, ApJ 467, L77CrossRefGoogle Scholar
Basri, G., Johns-Krull, C. M., Mathieu, R. D. 1997, AJ, 114, 781CrossRefGoogle Scholar
Bouvier, J., Rigaut, F., Nadeau, D. 1997, A&A, 323, 139Google Scholar
Carr, J. S., Mathieu, R. D., & Najita, J. R. 2001, ApJ, 551, 454CrossRefGoogle Scholar
Duquennoy, A. & Mayor, M. 1991, A&A, 248, 485Google Scholar
Günther, R. & Kley, W. 2002, A&A, 387, 550Google Scholar
Hartigan, P., Edwards, S. & Ghandour, L. 1995 ApJ 452, 736CrossRefGoogle Scholar
Herbig, G. H. 1977 ApJ 217, 693CrossRefGoogle Scholar
Herbst, W., Eislöffel, J., Mundt, R., & Scholz, A. 2007 In Protostars and Planets V, Reipurth, B., Jewitt, D., and Keil, K. (eds.), University of Arizona Press, Tucson, 297Google Scholar
Hirth, G.A., Mundt, R. & Soif, J. 1997 A&AS 126, 437Google Scholar
Huerta, M., Hartigan, P., & White, R. J. 2005, AJ, 129, 985CrossRefGoogle Scholar
Jensen, E. L. N., Dhital, S., Stassun, K. G., Patience, J., Herbst, W., Walter, F. M., Simon, M., Basri, G. 2007, AJ, 134, 241CrossRefGoogle Scholar
Jensen, E. L. N., Koerner, D. W., & Mathieu, R. D. 1996, AJ, 111, 2431CrossRefGoogle Scholar
Jensen, E. L. N. & Mathieu, R. D. 1997, AJ, 114, 301CrossRefGoogle Scholar
Martín, E. L., Magazzú, A., Delfosse, X., & Mathieu, R. D. 2005, A&A, 429, 939Google Scholar
Mathieu, R. D., Stassun, K., Basri, G., Jensen, E. L. N., Johns-Krull, C. M., Valenti, J. A., Hartmann, L. W. 1997, AJ, 113, 1841CrossRefGoogle Scholar
Mathieu, R. D. in The Formation of Binary Stars, Proceedings of IAU Symp. 200, Edited by Zinnecker, Hans and Mathieu, Robert D., 2001, p. 419.CrossRefGoogle Scholar
Meibom, S., Mathieu, R. D., & Stassun, K. G.ApJ, in pressGoogle Scholar
Meibom, S., Mathieu, R. D., & Stassun, K. G. 2006, ApJ, 653, 621CrossRefGoogle Scholar
Patience, J., Ghez, A. M., Reid, I. N., & Matthews, K. 2002 AJ, 123, 1570CrossRefGoogle Scholar
Prato, L., Simon, M., Mazeh, T., Zucker, S., & McLean, I. S. 2002, ApJ, 579, L99CrossRefGoogle Scholar
Stempels, H.C. & Gahm, G.F. 2004, A&A 421, 1159Google Scholar