Journal of the Institute of Mathematics of Jussieu



CHARACTERS OF COVERING GROUPS OF $SL(n)$


Jeffrey Adams a1
a1 University of Maryland

Abstract

We study characters of an $n$-fold cover $\widetilde{SL} (n,\mathbb{F})$ of $SL(n,\mathbb{F})$ over a non-Archimedean local field. We compute the character of an irreducible representation of $\widetilde{SL}(n,\mathbb{F})$ in terms of the character of an irreducible representation of a cover $\widetilde{GL}(n,\mathbb{F})$ of $GL(n,\mathbb{F})$. We define an analogue of L-packets for $\widetilde{SL}(n,\mathbb{F})$, such that the character of a linear combination of the representations in such a packet is computed in terms of the character of an irreducible representation of $PGL(n,\mathbb{F})$. This is analogous to stable endoscopic lifting for linear groups. We also prove an ‘inversion’ formula expressing the character of a genuine irreducible representation of $\widetilde{SL}(n,\mathbb{F})$ as a linear combination of virtual characters, each of which is obtained from $PGL(n,\mathbb{F})$.

AMS 2000 Mathematics subject classification: Primary 22E50. Secondary 11F70

(Received April 20 2002)
(Accepted June 17 2002)


Key Words: metaplectic group; representation theory; lifting; character.