Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T14:00:09.744Z Has data issue: false hasContentIssue false

Subdaily Growth Patterns and Organo-Mineral Nanostructure of the Growth Layers in the Calcitic Prisms of the Shell of Concholepas concholepas Bruguière, 1789 (Gastropoda, Muricidae)

Published online by Cambridge University Press:  28 September 2007

Nury Guzman
Affiliation:
UR055 PALEOTROPIQUE, Institut de Recherche pour le Développement, 32 rue Henri Varagnat, F-93143 Bondy, France
Alexander D. Ball
Affiliation:
Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, UK
Jean-Pierre Cuif
Affiliation:
URM 8148 Interactions et Dynamique des Environnements de Surface, bât 504, Université Paris XI, F-91405 Orsay cedex, France
Yannicke Dauphin
Affiliation:
URM 8148 Interactions et Dynamique des Environnements de Surface, bât 504, Université Paris XI, F-91405 Orsay cedex, France
Alain Denis
Affiliation:
URM 8148 Interactions et Dynamique des Environnements de Surface, bât 504, Université Paris XI, F-91405 Orsay cedex, France
Luc Ortlieb
Affiliation:
UR055 PALEOTROPIQUE, Institut de Recherche pour le Développement, 32 rue Henri Varagnat, F-93143 Bondy, France
Get access

Abstract

Fluorochrome marking of the gastropod Concholepas concholepas has shown that the prismatic units of the shell are built by superimposition of isochronic growth layers of about 2 μm. Fluorescent growth marks make it possible to establish the high periodicity of the cyclic biomineralization process at a standard growth rhythm of about 45 layers a day. Sulphated polysaccharides have been identified within the growth layers by using synchrotron radiation, whereas high resolution mapping enables the banding pattern of the mineral phase to be correlated with the layered distribution of polysaccharides. Atomic force microscopy has shown that the layers are made of nanograins densely packed in an organic component.

Type
BIOLOGICAL APPLICATIONS
Copyright
© 2007 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addadi, L., Joester, D., Nudelman, F. & Weiner, S. (2006). Mollusk shell formation: A source of new concepts for understanding biomineralization processes. Chemistry 12, 980987.Google Scholar
Adkins, J.F., Boyle, E.A., Curry, W.B. & Lutringer, A. (2003). Stable isotopes in deep-sea corals and a new mechanism for “vital effects.” Geochim Cosmochim Acta 67, 11291143.Google Scholar
Blamart, B., Rollion-Bard, C., Cuif, J.P., Juillet-Leclerc, A., Lutringer, A. & Van Weering, T.C.E. (2005). C and O isotopes in a deep-sea coral (Lophelia pertusa) related to a skeletal microstructure. In Cold-Water Corals and Ecosystems, Freiwald, A. & Roberts, J.M. (Eds.), pp. 10051020. Berlin, Heidelberg: Springer Verlag.
Clarke, A., Prothero-Thomas, E., Beaumont, J.C., Chapman, A.L. & Brey, T. (2004). Growth in the limpet Nacella concinna from contrasting sites in Antarctica. Polar Biol 28, 6271.Google Scholar
Cuif, J.P., Dauphin, Y., Doucet, J., Salomé, M. & Susini, J. (2003). XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochim Cosmochim Acta 67, 7583.Google Scholar
Dauphin, Y., Cuif, J.P., Doucet, J., Salomé, M., Susini, J. & Williams, C.T. (2003a). In situ chemical speciation of sulfur in calcitic biominerals and the simple prism concept. J Struct Biol 142, 272280.Google Scholar
Dauphin, Y., Cuif, J.P., Doucet, J., Salomé, M., Susini, J. & Williams, C.T. (2003b). In situ mapping of growth lines in the calcitic prismatic layers of mollusc shells using X-ray absorption near-edge structure (XANES) spectroscopy at the sulphur K-edge. Mar Biol 142, 299304.Google Scholar
Dauphin, Y., Cuif, J.P., Salomé, M., Susini, J. & Williams, C.T. (2006). Microstructures and chemical composition of giant avian eggshells. Anal Bioanal Chem 386, 761771.Google Scholar
Dauphin, Y., Guzman, N., Denis, A., Cuif, J.P. & Ortlieb, L. (2003c). Microstructure, nanostructure and composition of the shell of Concholepas concholepas (Gastropoda, Muricidae). Aquat Liv Res 16, 95103.Google Scholar
Frémy, M. (1855). Recherches chimiques sur l'os. Ann Chem Phys 43, 47107.Google Scholar
Guzman, N. (2004). Validation d'une approche scléroclimatologique sur la côte du Chili et du Pérou par l'analyse microstructurale et biogéochimique des coquilles du gastéropode Concholepas concholepas (Bruguière, 1789). Thèse Université Paris XI, 219 p.
Heilmayer, O., Honnen, C., Jacob, U., Chiantore, M., Cattaneao-Vietti, R. & Brey, T. (2005). Temperature effects on summer growth rates in the antarctic scallop, Adamussium colbeicki. Polar Biol 2, 523527.Google Scholar
Hidi, H. & Hanks, J.E. (1968). Vital staining of bivalve mollusk shells with alizarin sodium monosulfonite. Proc Nation Shellfish Assoc 53, 3741.Google Scholar
Iyengar, E.V. (2002). Sneaky snails and wasted worms: Kleptoparasitism by Trichotropis cancellata (Mollusca, Gastropoda) on Serpula columbiana (Annelida, Polychaeta). Mar Ecol Prog Ser 244, 153162.Google Scholar
Kaehler, S. & McQuaid, C.D. (1999). Use of fluorochrome calcein as an in situ growth marker in the brown mussel Perna perna. Mar Biol 133, 455460.Google Scholar
Koike, H. (1973). Daily growth lines of the clam, Meretrix lusoria—A basic study for the estimation of prehistoric seasonal gathering. J Anthrop Soc Nippon 81, 122138.Google Scholar
Meibom, A., Cuif, J.P., Hillion, F., Constantz, B., Juillet-Leclerc, A., Dauphin, Y., Watanabe, T. & Dunbar, R.B. (2004). Distribution of magnesium in coral skeleton. Geophys Res Lett 31, L23306 doi 10.1029/2044GL021313.Google Scholar
Mohler, J.W. (1997). Immersion of larval Atlantic salmon in calcein solutions to induce a non-lethally detectable mark. N Am J Fish Manag 17, 751756.Google Scholar
Moran, A.L. (2000). Calcein as a marker in experimental studies on newly-hatched gastropods. Mar Biol 137, 893898.Google Scholar
Rollion-Bard, C., Blamart, D., Cuif, J.P. & Juillet-Leclerc, A. (2003). Microanalysis of C and O isotopes of azooxanthellate and zooxanthellate corals by ion microprobe. Coral Reefs 22, 405415.Google Scholar
Urey, H.C., Lowenstam, H.A., Epstein, S. & McKinney, C.R. (1951). Measurement of palaeotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the Southeastern United States. Bull Geol Soc Am 82, 399416.Google Scholar
Vermeij, G.J. & Carlson, S.J. (2000). The muricid gastropod subfamily Rapaninae: Phylogeny and ecological history. Paleobiology 26, 1946.Google Scholar
Weiner, S. & Dove, P.M. (2003). An overview of biomineralization processes and the problem of the vital effect. In Biomineralization, Dove, P.M., DeYoreo, J.J. & Weiner, S. (Eds.), S54, pp. 129.