Seed Science Research

Review Article

Transport of nutrients into developing seeds: a review of physiological mechanisms

P. Wolswinkela1

a1 Transport Physiology Research Group, Department of Plant Ecology and Evolutionary Biology, University of Utrecht, PO Box 800 84, 3508 TB Utrecht, Netherlands


After synthesis in the vegetative parts of the plant, assimilates are translocated to fruits through xylem and phloem. Research on factors controlling nutrient transport into developing seeds via the phloem has been stimulated by the development of the empty seed coat technique.

There is a consensus that as assimilates are transported from maternal tissues to filial tissues they are delivered to the extracellular space (the apoplast) separating the two generations, prior to uptake from the apoplast into the tissues of the embryo or endosperm. The empty seed coat technique has been used for the study of several aspects of nutrient transport into seeds, e.g. metabolic control and turgorsensitive transport. The osmotic environment of seed tissues has a strong effect on assimilate transport into empty seeds. Several lines of evidence suggest that one of the main ‘secrets’ of the high sink strength of developing seeds, at least in many taxonomic groups of dicotyledons, is that the sink end of the phloem pathway is ‘bathed’ in an apoplast solution with a high concentration of osmotically active solutes. Data on maize do not fit this pattern. A turgor homeostat mechanism may help to maintain high solute concentrations in the seed apoplast. The apoplast environment of seed tissues may also stimulate synthesis of storage proteins and be involved in the prevention of precocious germination. In addition to the osmotic environment, other factors influencing sink strength are discussed. Some aspects of solute transformation during transport through seed tissues are described.

(Received January 21 1992)

(Accepted February 21 1992)


  • assimilate transport;
  • cereals;
  • legumes;
  • phloem transport;
  • seed development;
  • sink strength;
  • turgor-sensitive transport