Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-27T21:15:22.875Z Has data issue: false hasContentIssue false

Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci

Published online by Cambridge University Press:  24 July 2007

E. Chiel
Affiliation:
Department of Entomology, Newe-Ya'ar Research Center, ARO, Ramat-Yishai, 30095 Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, 31905
Y. Gottlieb
Affiliation:
Department of Entomology, the Volcani Center, ARO, Beit-Dagan
E. Zchori-Fein*
Affiliation:
Department of Entomology, Newe-Ya'ar Research Center, ARO, Ramat-Yishai, 30095
N. Mozes-Daube
Affiliation:
Department of Entomology, Newe-Ya'ar Research Center, ARO, Ramat-Yishai, 30095
N. Katzir
Affiliation:
Department of Vegetable Crops, Newe-Ya'ar Research Center, ARO, Ramat-Yishai, 30095
M. Inbar
Affiliation:
Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, 31905
M. Ghanim
Affiliation:
Department of Entomology, the Volcani Center, ARO, Beit-Dagan
*
*Corresponding author E-mail: einat@agri.gov.il

Abstract

The sweet potato whitefly, Bemisia tabaci, harbors Portiera aleyrodidarum, an obligatory symbiotic bacterium, as well as several secondary symbionts including Rickettsia, Hamiltonella, Wolbachia, Arsenophonus, Cardinium and Fritschea, the function of which is unknown. Bemisia tabaci is a species complex composed of numerous biotypes, which may differ from each other both genetically and biologically. Only the B and Q biotypes have been reported from Israel. Secondary symbiont infection frequencies of Israeli laboratory and field populations of B. tabaci from various host plants were determined by PCR, in order to test for correlation between bacterial composition to biotype and host plant. Hamiltonella was detected only in populations of the B biotype, while Wolbachia and Arsenophonus were found only in the Q biotype (33% and 87% infection, respectively). Rickettsia was abundant in both biotypes. Cardinium and Fritschea were not found in any of the populations. No differences in secondary symbionts were found among host plants within the B biotype; but within the Q biotype, all whiteflies collected from sage harboured both Rickettsia and Arsenophonus, an infection frequency which was significantly higher than those found in association with all other host plants. The association found between whitefly biotypes and secondary symbionts suggests a possible contribution of these bacteria to host characteristics such as insecticide resistance, host range, virus transmission and speciation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baumann, P. (2005) Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annual Review of Microbiology 59, 155189.Google Scholar
Brown, J.K., Frohlich, D.R. & Rosell, R.C. (1995) The sweet-potato or silverleaf whiteflies – biotypes of Bemisia tabaci or a species complex. Annual Review of Entomology 40, 511534.Google Scholar
Chen, D.Q., Montllor, C.B. & Purcell, A.H. (2000) Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi. Entomologia Experimentalis et Applicata 95, 315323.Google Scholar
Costa, H.S., Westcot, D.M., Ullman, D.E., Rosell, R.C., Brown, J.K. & Johnson, M.W. (1995) Morphological variation in Bemisia endosymbionts. Protoplasma 189, 194202.Google Scholar
Dale, C., Beeton, M., Harbison, C., Jones, T. & Pontes, M. (2006) Isolation, pure culture, and characterization of “Candidatus Arsenophonus arthropodicus,” an intracellular secondary endosymbiont from the hippoboscid louse fly Pseudolynchia canariensis. Applied and Environmental Microbiology 72, 29973004.Google Scholar
Darby, A.C., Birkle, L.M., Turner, S.L. & Douglas, A.E. (2001) An aphid-borne bacterium allied to the secondary symbionts of whitefly. FEMS Microbiology Ecology 36, 4350.Google Scholar
Darby, A.C., Tosh, C.R., Walters, K.F.A. & Douglas, A.E. (2003) The significance of a facultative bacterium to natural populations of the pea aphid Acyrthosiphon pisum. Ecological Entomology 28, 145150.Google Scholar
De Barro, P.J. (2005) Genetic structure of the whitefly Bemisia tabaci in the Asia-Pacific region revealed using microsatellite markers. Molecular Ecology 14, 36953718.Google Scholar
De Barro, P.J. & Hart, P.J. (2000) Mating interactions between two biotypes of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) in Australia. Bulletin of Entomological Research 90, 103112.Google Scholar
De Barro, P.J., Trueman, J.W.H. & Frohlich, D.R. (2005) Bemisia argentifolii is a race of B. tabaci (Hemiptera: Aleyrodidae): the molecular genetic differentiation of B. tabaci populations around the world. Bulletin of Entomological Research 95, 193203.Google Scholar
Everett, K.D.E., Thao, M.L., Horn, M., Dyszynski, G.E. & Baumann, P. (2005) Novel chlamydiae in whiteflies and scale insects: endosymbionts ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain Elm. International Journal of Systematic and Evolutionary Microbiology 55, 15811587.Google Scholar
Ferrari, J., Darby, A.C., Daniell, T.J., Godfray, H.C.J. & Douglas, A.E. (2004) Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecological Entomology 29, 6065.Google Scholar
Frohlich, D.R., Torres-Jerez, I., Bedford, I.D., Markham, P.G. & Brown, J.K. (1999) A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Molecular Ecology 8, 16831691.Google Scholar
Gerling, D. & Mayer, R.T. (1996) Bemisia: 1995 Taxonomy, Biology, Damage, Control and Management. 702 pp. Andover, UK, Intercept Press.Google Scholar
Gherna, R.L., Werren, J.H., Weisburg, W., Cote, R., Woese, C.R., Mandelco, L. & Brenner, D.J. (1991) Arsenophonus-nasoniae gen-nov, sp-nov, the causative agent of the son-killer trait in the parasitic wasp Nasonia vitripennis. International Journal of Systemic Bacteriology 41, 563565.Google Scholar
Gottlieb, Y., Ghanim, M., Chiel, E., Gerling, D., Portnoy, V., Steinberg, S., Tzuri, G., Horowitz, A.R., Belausov, E., Mozes-Daube, N., Kontsedalov, S., Gershon, M., Gal, S., Katzir, N. & Zchori-Fein, E. (2006) Identification and localization of a Rickettsia sp in Bemisia tabaci (Homoptera: Aleyrodidae). Applied and Environmental Microbiology 72, 36463652.Google Scholar
Haynes, S., Darby, A.C., Daniell, T.J., Webster, G., Van Veen, F.J.F., Godfray, H.C.J., Prosser, J.I. & Douglas, A.E. (2003) Diversity of bacteria associated with natural aphid populations. Applied and Environmental Microbiology 69, 72167223.Google Scholar
Heddi, A., Grenier, A.M., Khatchadourian, C., Charles, H. & Nardon, P. (1999) Four intracellular genomes direct weevil biology: Nuclear, mitochondrial, principal endosymbiont, and Wolbachia. Proceedings of the National Academy of Sciences USA 96, 68146819.Google Scholar
Horowitz, A.R., Kontsedalov, S., Khasdan, V. & Ishaaya, I. (2005) Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology 58, 216225.Google Scholar
Khasdan, V., Levin, I., Rosner, A., Morin, S., Kontsedalov, S., Maslenin, L. & Horowitz, A.R. (2005) DNA markers for identifying biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) and studying population dynamics. Bulletin of Entomological Research 95, 605613.Google Scholar
Koga, R., Tsuchida, T. & Fukatsu, T. (2003) Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. Proceedings of the Royal Society Series B 270, 25432550.Google Scholar
Leonardo, T.E. & Mondor, E.B. (2006) Symbiont modifies host life-history traits that affect gene flow. Proceedings of the Royal Society Series B 273, 10791084.Google Scholar
Ma, D., Hadjistylli, M., Gorman, K., Denholm, I. & Devine, G. (2004) Pre- and post-zygotic breeding incompatibilities between B and Q biotypes of Bemisia tabaci. pp. 1314 in Proceedings of the 2nd European whitefly Symposium. Cavtat, Croatia, 5–9 October 2004. (http://www.whitefly.org/ews/ewsii-AbsCompendium.pdf)Google Scholar
Montllor, C.B., Maxmen, A. & Purcell, A.H. (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecological Entomology 27, 189195.Google Scholar
Nirgianaki, A., Banks, G.K., Frohlich, D.R., Veneti, Z., Braig, H.R., Miller, T.A., Bedford, I.D., Markham, P.G., Savakis, C. & Bourtzis, K. (2003) Wolbachia infections of the whitefly Bemisia tabaci. Current Microbiology 47, 93101.Google Scholar
Nombela, G., Beitia, F. & Muniz, M. (2001) A differential interaction study of Bemisia tabaci Q-biotype on commercial tomato varieties with or without the Mi resistance gene, and comparative host responses with the B-biotype. Entomologia Experimentalis et Applicata 98, 339344.Google Scholar
Oliveira, M.R.V., Henneberry, T.J. & Anderson, P. (2001) History, current status, and collaborative research projects for Bemisia tabaci. Crop Protection 20, 709723.Google Scholar
Oliver, K.M., Russell, J.A., Moran, N.A. & Hunter, M.S. (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proceedings of the National Academy of Sciences USA 100, 18031807.Google Scholar
Pascual, S. & Callejas, C. (2004) Intra- and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain. Bulletin of Entomological Research 94, 369375.Google Scholar
Perlman, S.J., Hunter, M.S. & Zchori-Fein, E. (2006) The emerging diversity of Rickettsia. Proceedings of the Royal Society Series B 273, 20972106 (DOI: 10.1098/rspb.2006.3541).Google Scholar
Perring, T.M. (2001) The Bemisia tabaci species complex. Crop Protection 20, 725737.Google Scholar
Sakurai, M., Koga, R., Tsuchida, T., Meng, X.Y. & Fukatsu, T. (2005) Rickettsia symbiont in the pea aphid Acyrthosiphon pisum: Novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera. Applied and Environmental Microbiology 71, 40694075.Google Scholar
Sandstrom, J.P., Russell, J.A., White, J.P. & Moran, N.A. (2001) Independent origins and horizontal transfer of bacterial symbionts of aphids. Molecular Ecology 10, 217228.Google Scholar
Scarborough, C.L., Ferrari, J. & Godfray, H.C.J. (2005) Aphid protected from pathogen by endosymbiont. Science 310, 17811781.Google Scholar
Simon, J.C., Carre, S., Boutin, M., Prunier-Leterme, N., Sabater-Munoz, B., Latorre, A. & Bournoville, R. (2003) Host-based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts. Proceedings of the Royal Society Series B 270, 17031712.Google Scholar
Stouthamer, R., Breeuwer, J.A.J. & Hurst, G.D.D. (1999) Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annual Review of Microbiology 53, 71102.Google Scholar
Thao, M.L.L. & Baumann, P. (2004) Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Current Microbiology 48, 140144.Google Scholar
Tsuchida, T., Koga, R., Shibao, H., Matsumoto, T. & Fukatsu, T. (2002) Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Molecular Ecology 11, 21232135.Google Scholar
Tsuchida, T., Koga, R. & Fukatsu, T. (2004) Host plant specialization governed by facultative symbiont. Science 303, 19891989.Google Scholar
Van Lenteren, J.C. & Noldus, L.P.J.J. (1990) Whitefly-Plant Relationships: Behavioural and Ecological Aspects. pp. 4790in Gerling, D. (Ed.) Whiteflies: their Bionomics, Pest Status and Management. Andover, UK, Intercept Press.Google Scholar
Weeks, A.R., Velten, R. & Stouthamer, R. (2003) Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proceedings of the Royal Society Series B 270, 18571865.Google Scholar
Werren, J.H. & Windsor, D.M. (2000) Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proceedings of the Royal Society Series B 267, 12771285.Google Scholar
Wu, D., Daugherty, S.C., Van Aken, S.E., Pai, G.H., Watkins, K.L., Khouri, H., Tallon, L.J., Zaborsky, J.M., Dunbar, H.E., Tran, P.L., Moran, N.A. & Eisen, J.A. (2006) Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biology 4, 10791092.Google Scholar
Zchori-Fein, E. & Brown, J.K. (2002) Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Annals of the Entomological Society of America 95, 711718.Google Scholar