Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T01:18:05.964Z Has data issue: false hasContentIssue false

Detecting Chromospheric Activity on the Secondary Star of Cataclysmic Variables

Published online by Cambridge University Press:  12 July 2007

Styliani Kafka*
Affiliation:
NOAO/CTIO, 603 Casilla, La Serena, Chileemail:skafka@noao.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Chromospheric activity on the secondary stars of cataclysmic variables (CVs) is a key ingredient for angular momentum loss from the system via magnetic braking. This effect is thought to drive the evolution of the system and is invoked to explain a number of observed properties of CV light curves, such as long-term modulations and high/low states. However, obtaining observational support for magnetic activity has proven difficult. We present a new method of studying chromospheric activity on the secondary stars of CVs, using near-IR spectral features. We discuss in particular the magnetic CV AM Herculis, in which satellites to the H-alpha emission line are interpreted as arising from magnetically confined gas streams (prominences). This phenomenon provides a new technique for mapping magnetic structures on CV secondaries, and advances our understanding of the nature of magnetic structures and activity on CV secondaries.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Bearman, P.W. & Graham, J.M.R. 1980, J. Fluid Mech. 99, 225 CrossRefGoogle Scholar
Bailey, J., Hough, J. H., & Wickramasinghe, D. T. 1988, MNRAS, 233, 395 CrossRefGoogle Scholar
Bianchini, A. 1987, Memorie della Societa Astronomica Italiana, 58, 245 Google Scholar
bonnet-bidaud, j. m. et al. 2000, A&A, 354, 1003 Google Scholar
Chanmugam, G., & Dulk, G. A. 1982, ApJL, 255, L107 CrossRefGoogle Scholar
Collier, C ameron, A. & Robinson, R. D. 1989, MNRAS, 238, 657 CrossRefGoogle Scholar
Dulk, G. A., Bastian, T. S., & Chanmugam, G. 1983, ApJ, 273, 249 CrossRefGoogle Scholar
Gänsicke, B. T., Beuermann, K., & de Martino, D. 1995, A&A, 303, 127 Google Scholar
Kafka, S., & Honeycutt, R. K. 2005, AJ, 130, 742 CrossRefGoogle Scholar
Kafka, S., Robertson, J., Honeycutt, R. K., & Howell, S. B. 2005a, AJ, 129, 2411 CrossRefGoogle Scholar
Kafka, S., Honeycutt, R. K., Howell, S. B., & Harrison, T. E. 2005b, AJ, 130, 2852 CrossRefGoogle Scholar
Kafka, S., Honeycutt, R. K., & Howell, S. B. 2006, AJ, 131, 2673 –c1995CrossRefGoogle Scholar
Kafka, S. Robertson, J., >Howell, S.B, & Honeycutt, R.K. 2006, AJ, submittedHowell,+S.B,+&+Honeycutt,+R.K.+2006,+AJ,+submitted>Google Scholar
Livio, M., & Pringle, J. E. 1994, ApJ, 427, 956 CrossRefGoogle Scholar
Mason, E., Wickramasinghe, D., Howell, S.B., & Szkody, p. 2007, A&A, in pressGoogle Scholar
Ritter, H. 1985, A&A, 145, 227 Google Scholar
Shakhovskoy, N. M., Alexeev, I. Y., Andronov, I. L., & Kolesnikov, S. V. 1993, Cataclysmic Variables and Related Physics, 10, 237 Google Scholar
Warner, B. 1995, Cambridge Astrophysics Series, Cambridge, New York: Cambridge University Press Google Scholar
Warner, B. 1988, Nature, 336, 129 CrossRefGoogle Scholar