Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T08:04:45.542Z Has data issue: false hasContentIssue false

Vanishing at infinity on homogeneous spaces of reductive type

Published online by Cambridge University Press:  15 April 2016

Bernhard Krötz
Affiliation:
Institut für Mathematik, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany email bkroetz@gmx.de
Eitan Sayag
Affiliation:
Department of Mathematics, Ben Gurion University of the Negev, POB 653, Be’er Sheva 84105, Israel email eitan.sayag@gmail.com
Henrik Schlichtkrull
Affiliation:
Department of Mathematics, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark email schlicht@math.ku.dk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $G$ be a real reductive group and $Z=G/H$ a unimodular homogeneous $G$ space. The space $Z$ is said to satisfy VAI (vanishing at infinity) if all smooth vectors in the Banach representations $L^{p}(Z)$ vanish at infinity, $1\leqslant p<\infty$. For $H$ connected we show that $Z$ satisfies VAI if and only if it is of reductive type.

Type
Research Article
Copyright
© The Authors 2016 

References

Bernstein, J., On the support of Plancherel measures , J. Geom. Phys. 5 (1988), 663710.CrossRefGoogle Scholar
Bernstein, J. and Krötz, B., Smooth Fréchet globalizations of Harish-Chandra modules , Israel J. Math. 199 (2014), 45111.CrossRefGoogle Scholar
Bopp, N. and Rubenthaler, H., Local zeta functions attached to the minimal spherical series for a class of symmetric spaces , Mem. Amer. Math. Soc. 174(821) (2005).Google Scholar
Borel, A. and Harish-Chandra, Arithmetic subgroups of algebraic groups , Ann. of Math. (2) 75 (1962), 485535.CrossRefGoogle Scholar
Borel, A. and Tits, J., Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I , Invent. Math. 12 (1971), 95104.Google Scholar
Eskin, A. and McMullen, C., Mixing, counting, and equidistribution in Lie groups , Duke Math. J. 71 (1993), 181209.Google Scholar
Grothendieck, A., Eléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III , Publ. Math. Inst. Hautes Études Sci. 28 (1966).Google Scholar
Helgason, S., Differential geometry, Lie groups, and symmetric spaces (Academic Press, 1978).Google Scholar
Hilgert, J. and Ólafsson, G., Causal symmetric spaces (Academic Press, 1997).Google Scholar
Howe, R. and Moore, C., Asymptotic properties of unitary representations , J. Funct. Anal. 32 (1979), 7296.Google Scholar
Humphreys, J., Linear algebraic groups, Graduate Texts in Mathematics, vol. 21 (Springer, 1975).Google Scholar
Knop, F., Krötz, B., Sayag, E. and Schlichtkrull, H., Volume growth, temperedness and integrability of matrix coefficients on a real spherical space, Preprint (2014),arXiv:1407.8006.Google Scholar
Krötz, B. and Schlichtkrull, H., On function spaces on symmetric spaces , in Representation theory, complex analysis, and integral geometry (Birkhäuser/Springer, New York, 2012), 18.Google Scholar
Lohoué, N. and Mustapha, S., Sur les transformées de Riesz sur les espaces homogènes des groupes de Lie semi-simples , Bull. Soc. Math. France 128 (2000), 485495.Google Scholar
Poulsen, N. S., On C -vectors and intertwining bilinear forms for representations of Lie groups , J. Funct. Anal. 9 (1972), 87120.Google Scholar
Rao, R., Orbital integrals in reductive groups , Ann. of Math. (2) 96 (1972), 505510.CrossRefGoogle Scholar
Rudnick, Z. and Schlichtkrull, H., Decay of eigenfunctions on semisimple symmetric spaces , Duke Math. J. 64 (1991), 445450.CrossRefGoogle Scholar
Wallach, N., Real reductive groups I (Academic Press, 1988).Google Scholar
Wolf, J., Spaces of constant curvature (McGraw-Hill, 1967).Google Scholar