Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T13:37:47.662Z Has data issue: false hasContentIssue false

Assessing floristic representativeness in the protected areas national system of Chile: are vegetation types a good surrogate for plant species?

Published online by Cambridge University Press:  16 March 2016

RAFAEL URBINA-CASANOVA*
Affiliation:
Laboratorio de Sistemática y Evolución de Plantas, Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago 9206, Chile
FEDERICO LUEBERT
Affiliation:
Laboratorio de Sistemática y Evolución de Plantas, Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago 9206, Chile Universität Bonn, Nees-Institut für Biodiversität der Pflanzen, Meckenheimer Allee 170, D-53115, Bonn, Germany
PATRICIO PLISCOFF
Affiliation:
Instituto de Geografía, Pontifica Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile Departamento de Ecología, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago 8331150, Chile
ROSA A. SCHERSON
Affiliation:
Laboratorio de Sistemática y Evolución de Plantas, Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago 9206, Chile
*
*Correspondence: Rafael Urbina-Casanova rafaelurbinac@gmail.com

Summary

Conservation planning relies heavily on representativeness patterns. In Chile, this has not been assessed at the species level. This study evaluates floristic representativeness in the National System of Protected Areas (SNASPE). Species rarefaction and non-parametric estimators were used to extrapolate total representativeness. Given that conservation planning in Chile is mainly based on protecting vegetation types, the effectiveness of using vegetation types as a surrogate of plant species was evaluated based on richness and complementarity. The study found available information for 42% of the 96 protected areas of continental Chile. According to this information the SNASPE protects at least 48% of the native vascular flora. The southern area protects the largest number of species, most of which are non-endemic natives. The largest number of endemic protected species was found in the central-northern area. The SNASPE in its full range is projected to protect 64% of the vascular flora of Chile. Richness and complementarity surrogacy analyses showed weak effectiveness of vegetation types as a surrogate of plant species, although complementarity performed slightly better than richness. Surrogacy effectiveness was lower for endemic species, probably due to their narrow distributions that are more easily missed when vegetation types are considered instead.

Type
Papers
Copyright
Copyright © Foundation for Environmental Conservation 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105121.Google Scholar
Araújo, M.B., Humphries, C.J., Densham, P.J., Lampinen, R., Hagemeijer, W.J.M., Mitchell-Jones, A.J. & Gasc, J.P. (2001) Would environmental diversity be a good surrogate for species diversity? Ecography 24: 103110.Google Scholar
Bannister, J.R., Vidal, O.J., Teneb, E. & Sandoval, V. (2011) Latitudinal patterns and regionalization of plant diversity along a 4270 km gradient in continental Chile. Austral Ecology 37 (4): 500509.CrossRefGoogle Scholar
Brooks, T.M., da Fonseca, G.A.B. & Rodrigues, A.S.L. (2004) Protected areas and species. Conservation Biology 18 (3): 616618.Google Scholar
Christenhusz, M.J.M., Zhang, X.C. & Schneider, H. (2011) A linear sequence of extant families and genera of lycophytes and ferns. Phytotaxa 19: 754.Google Scholar
Colwell, R.K. (2013) EstimateS: Statistical estimation of species richness and shared species from samples. Version 9.1. [WWW document]. URL: http://purl.oclc.org/estimates Google Scholar
Colwell, R.K., Chao, A., Gotelli, N., Lin, S., Mao, C.X., Chazdon, R.L. & Longino, J.T. (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology 5 (1): 321.Google Scholar
Colwell, R.K., Mao, C.X. & Chang, J. (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85: 27172727.Google Scholar
Cowling, R.M., Knight, A.T., Faith, D.P., Ferrier, S., Lombard, A.T., Driver, A., Rouget, M., Maze, K. & Desmet, P.G. (2004) Nature conservation requires more than a passion for species. Conservation Biology 18 (6): 16741676.Google Scholar
Elbers, J. (2011) Las áreas protegidas de América Latina: situación actual y perspectivas para el futuro. Quito, Ecuador: UICN.Google Scholar
Ferrier, S. & Watson, G. (1997) An evaluation of the effectiveness of environmental surrogates and modelling techniques in predicting the distribution of biological diversity. Australia: Environment Australia.Google Scholar
French, K. (1999) Spatial variability in species composition in birds and insects. Journal of Insect Conservation 3: 183189.CrossRefGoogle Scholar
Gotelli, N.J. & Colwell, R.K. (2011) Estimating species richness. In: Biological Diversity. Frontiers in Measurement and Assessment, eds. Magurran, A.E. & McGill, B.J., pp. 3954. New York, USA: Oxford University Press.Google Scholar
Grantham, H.S., Pressey, R.L., Wells, J.A. & Beattie, A.J. (2010) Effectiveness of biodiversity surrogates for conservation planning: different measures of effectiveness generate a kaleidoscope of variation. PLoS ONE 5 (7): e11430.Google Scholar
Instituto de Botánica Darwinion (2013) Flora del Cono Sur. Catálogo de Plantas Vasculares. [WWW document]. URL: http://www.darwin.edu.ar/Proyectos/FloraArgentina/fa.htm Google Scholar
Jenkins, C.N. & Joppa, L. (2009) Expansion of the global terrestrial protected area system. Biological Conservation 142: 21662174.Google Scholar
Jost, L., Chao, A. & Chazdon, R.L. (2011) Compositional similarity and beta diversity. In: Biological Diversity. Frontiers in Measurement and Assessment, eds. Magurran, A.E. & McGill, B.J., pp. 6684. New York, USA: Oxford University Press.Google Scholar
Kukkala, A.S. & Moilanen, A. (2013) Core concepts of spatial prioritization in systematic conservation planning. Biological Reviews 88: 443464.CrossRefGoogle ScholarPubMed
Lawler, J.J. & White, D. (2008) Assessing the mechanisms behind successful surrogates for biodiversity in conservation planning. Animal Conservation 11: 270280.CrossRefGoogle Scholar
Lewandowski, A.S., Noss, R.F. & Parsons, D.R. (2010) The effectiveness of surrogate taxa for the representation of biodiversity. Conservation Biology 24 (5): 13671377.CrossRefGoogle ScholarPubMed
Lombard, A.T., Cowling, R.M., Pressey, R.L. & Rebelo, A.G. (2003) Effectiveness of land classes as surrogates for species in conservation planning for the Cape Floristic Region. Biological Conservation 112: 4562.Google Scholar
Luebert, F. & Becerra, P. (1998) Representatividad vegetacional del Sistema Nacional de Áreas Silvestres Protegidas del Estado (SNASPE) en Chile. Ambiente y Desarrollo 14: 6269.Google Scholar
Luebert, F. & Pliscoff, P. (2006) Sinopsis bioclimática y vegetacional de Chile. Santiago, Chile: Editorial Universitaria.Google Scholar
Magurran, A.E. (2004) Measuring biological diversity. Oxford, UK: Blackwell Publishing.Google Scholar
Mardones, G. (1998) Representatividad biogeográfica del Sistema Nacional de Áreas Silvestres Protegidas del Estado (SNASPE). Revista Geográfica de Chile Terra Australis 43: 3144.Google Scholar
Margules, C.R. & Pressey, R.L. (2000) Systematic conservation planning. Nature 405 (6783): 243253.Google Scholar
Margules, C.R. & Sarkar, S. (2007) Systematic conservation planning. New York, USA: Cambridge University Press.Google Scholar
Maurer, B.A. & McGill, B.J. (2011) Measurement of species diversity. In: Biological Diversity. Frontiers in Measurement and Assessment, eds. Magurran, A.E. & McGill, B.J., pp. 5565. New York, USA: Oxford University Press.Google Scholar
Missouri Botanical Garden (2013) Tropicos.org. [WWW document]. URL: http://www.tropicos.org Google Scholar
Moritz, C., Richardson, K.S., Ferrier, S., Monteith, G.B., Stanisic, J., Williams, S.E. & Whiffin, T. (2001) Biogeographical concordance and efficiency of taxon indicators for establishing conservation priority in a tropical rainforest biota. Proceedings of the Royal Society of London B 268: 18751881.Google Scholar
Ormazabal, C.S. (1993) The conservation of biodiversity in Chile. Revista Chilena de Historia Natural 66: 383402.Google Scholar
Pauchard, A. & Villarroel, P. (2002) Protected areas in Chile: history, current status, and challenges. Natural Areas Journal 22: 318330.Google Scholar
Pliscoff, P. & Fuentes-Castillo, T. (2011) Representativeness of terrestrial ecosystems in Chile's protected area system. Environmental Conservation 38 (3): 303311.Google Scholar
Qian, H., Fridley, J.D. & Palmer, M.W. (2007) The latitudinal gradient of species-area relationships for vascular plants of North America. The American Naturalist 170: 690701.Google Scholar
Rodrigues, A.S.L. & Brooks, T.M. (2007) Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annual Review of Ecology, Evolution, and Systematics 38: 713737.Google Scholar
Rodrigues, A.S.L., Andelman, S.J., Bakarr, M.I., Boitani, L., Brooks, T.M., Cowling, R.M., Fishpool, L.D.C., da Fonseca, G.A.B., Gaston, K.J., Hoffmann, M., Long, J.S., Marquet, P.A., Pilgrim, J.D., Pressey, R.L., Schipper, J., Sechrest, W., Stuart, S.N., Underhill, L.G., Waller, R.W., Watts, M.E.J. & Yan, X. (2004) Effectiveness of the global PA network in representing species diversity. Nature 428: 640643.Google Scholar
Rosenzweig, M.L. (1995) Species diversity in space and time. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Rovira, J., Ortega, D., Álvarez, D. & Molt, K. (2008) Áreas protegidas en Chile. In: Biodiversidad de Chile: Patrimonio y Desafíos, ed. CONAMA, pp. 506561. Santiago, Chile: Ocho Libros Editores.Google Scholar
Saetersdal, M. & Gjerde, I. (2011) Prioritizing conservation areas using species surrogate measures: consistent with ecological theory? Journal of Applied Ecology 48: 12361240.Google Scholar
Stoms, D.M., Comer, P.J., Crist, P.J. & Grossman, D.H. (2005) Choosing surrogates for biodiversity conservation in complex planning environments. Journal of Conservation Planning 1: 2639.Google Scholar
The Plant List (2010) The Plant List, Version 1. [WWW document]. URL: http://www.theplantlist.org/ Google Scholar
Tognelli, M., Ramirez de Arellano, P.I. & Marquet, P.A. (2008) How well do the existing and proposed reserve networks represent vertebrate species in Chile? Diversity and Distributions 14: 148158.Google Scholar
Zuloaga, F.O., Morrone, O. & Belgrano, M.J. (2008) Catálogo de las Plantas Vasculares del Cono Sur (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay). St. Louis, Missouri, USA: Missouri Botanical Garden Press.Google Scholar
Supplementary material: PDF

Urbina-Casanova supplementary material S1

Urbina-Casanova supplementary material

Download Urbina-Casanova supplementary material S1(PDF)
PDF 46.6 KB
Supplementary material: PDF

Urbina-Casanova supplementary material S2

Urbina-Casanova supplementary material

Download Urbina-Casanova supplementary material S2(PDF)
PDF 24.1 KB
Supplementary material: PDF

Urbina-Casanova supplementary material S3

Urbina-Casanova supplementary material

Download Urbina-Casanova supplementary material S3(PDF)
PDF 135.1 KB
Supplementary material: File

Urbina-Casanova supplementary material S4

Urbina-Casanova supplementary material

Download Urbina-Casanova supplementary material S4(File)
File 668.9 KB