Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T15:18:46.369Z Has data issue: false hasContentIssue false

ON VECTOR-VALUED TENT SPACES AND HARDY SPACES ASSOCIATED WITH NON-NEGATIVE SELF-ADJOINT OPERATORS

Published online by Cambridge University Press:  21 July 2015

MIKKO KEMPPAINEN*
Affiliation:
Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
*
Current address: Department of Mathematics and Statistics, University of Helsinki, FI-00014 Helsinki, Finland e-mail: mikko.k.kemppainen@helsinki.fi
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we study Hardy spaces associated with non-negative self-adjoint operators and develop their vector-valued theory. The complex interpolation scales of vector-valued tent spaces and Hardy spaces are extended to the endpoint p=1. The holomorphic functional calculus of L is also shown to be bounded on the associated Hardy space H1L(X). These results, along with the atomic decomposition for the aforementioned space, rely on boundedness of certain integral operators on the tent space T1(X).

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2015 

References

REFERENCES

1. Amenta, A., Tent spaces over metric measure spaces under doubling and related assumptions, in Operator theory in harmonic and non-commutative analysis, Operator Theory: Advances and Applications, vol. 240 (Birkhäuser, Basel, 2014), 129.Google Scholar
2. Amenta, A. and Kemppainen, M., Non-uniformly local tent spaces, Publ. Mat. 59 (1) (2015), 245270.Google Scholar
3. Auscher, P., McIntosh, A. and Morris, A. J., Calderón reproducing formulas and applications to Hardy spaces, Rev. Mat. Iberoam. (to appear).Google Scholar
4. Auscher, P., McIntosh, A. and Russ, E., Hardy spaces of differential forms on Riemannian manifolds, J. Geom. Anal. 18 (1) (2008), 192248.Google Scholar
5. Bergh, J. and Löfström, J., Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223 (Springer-Verlag, Berlin, 1976).Google Scholar
6. Bernal, A., Some results on complex interpolation of Tp q spaces, in Interpolation spaces and related topics (Haifa, 1990), Israel Math. Conf. Proc., vol. 5 (Bar-Ilan University, Ramat Gan, 1992), 110.Google Scholar
7. Betancor, J. J., Castro, A. J., Fariña, J. C. and Rodríguez-Mesa, L., Conical square functions associated with Bessel, Laguerre and Schrödinger operators in UMD Banach spaces, arXiv:1404.5779.Google Scholar
8. Bourgain, J., Vector-valued singular integrals and the H1 -BMO duality, in Probability theory and harmonic analysis (Cleveland, Ohio, 1983), Monogr. Textbooks Pure Appl. Math., vol. 98 (Dekker, New York, 1986), 119.Google Scholar
9. Burkholder, D. L., Martingales and singular integrals in Banach spaces, in Handbook of the geometry of Banach spaces, vol. I (North-Holland, Amsterdam, 2001), 233269.Google Scholar
10. Coifman, R. R., Meyer, Y. and Stein, E. M., Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (2) (1985), 304335.CrossRefGoogle Scholar
11. Cowling, M., Doust, I., McIntosh, A. and Yagi, A., Banach space operators with a bounded H functional calculus, J. Austral. Math. Soc. Ser. A 60 (1) (1996), 5189.Google Scholar
12. Guerre-Delabrière, S., Some remarks on complex powers of (-Δ) and UMD spaces, Illinois J. Math. 35 (3) (1991), 401407.Google Scholar
13. Harboure, E., Torrea, J. L. and Viviani, B. E., A vector-valued approach to tent spaces, J. Analyse Math. 56 (1991), 125140.Google Scholar
14. Hieber, M. and Prüss, J., Functional calculi for linear operators in vector-valued Lp -spaces via the transference principle, Adv. Differ. Equ. 3 (6) (1998), 847872.Google Scholar
15. Hofmann, S., Lu, G., Mitrea, D., Mitrea, M. and Yan, L., Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Mem. Amer. Math. Soc. 214 (1007) (2011), vi+78.Google Scholar
16. Hofmann, S. and Mayboroda, S., Hardy and BMO spaces associated to divergence form elliptic operators, Math. Ann. 344 (1) (2009), 37116.CrossRefGoogle Scholar
17. Hofmann, S., Mayboroda, S. and McIntosh, A., Second order elliptic operators with complex bounded measurable coefficients in Lp , Sobolev and Hardy spaces, Ann. Sci. Éc. Norm. Supér. (4) 44 (5) (2011), 723800.Google Scholar
18. Hytönen, T., Fourier embeddings and Mihlin-type multiplier theorems, Math. Nachr. 274/275 (2004), 74103.Google Scholar
19. Hytönen, T. and Kairema, A., Systems of dyadic cubes in a doubling metric space, Colloq. Math. 126 (1) (2012), 133.CrossRefGoogle Scholar
20. Hytönen, T., Van Neerven, J. M. A. M. and Portal, P., Conical square function estimates in UMD Banach spaces and applications to H -functional calculi, J. Anal. Math. 106 (2008), 317351.CrossRefGoogle Scholar
21. Hytönen, T. and Weis, L., The Banach space-valued BMO, Carleson's condition, and paraproducts, J. Fourier Anal. Appl. 16 (4) (2010), 495513.Google Scholar
22. Kemppainen, M., The vector-valued tent spaces T1 and T , J. Aust. Math. Soc. 97 (1) (2014), 107126.Google Scholar
23. Kunstmann, P. C. and Weis, L., Maximal Lp -regularity for parabolic equations, Fourier multiplier theorems and H -functional calculus, in Functional analytic methods for evolution equations, Lecture Notes in Math., vol. 1855 (Springer, Berlin, 2004), 65311.CrossRefGoogle Scholar
24. McIntosh, A., Operators which have an H functional calculus, in Miniconference on operator theory and partial differential equations (North Ryde, 1986), Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 14 (Austral. Nat. Univ., Canberra, 1986), 210231.Google Scholar
25. Van Neerven, J. M. A. M., γ-radonifying operators–-a survey, in The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis, Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 44 (Austral. Nat. Univ., Canberra, 2010), 161.Google Scholar
26. Van Neerven, J. M. A. M. and Weis, L., Stochastic integration of functions with values in a Banach space, Stud. Math. 166 (2) (2005), 131170.Google Scholar
27. Russ, E., The atomic decomposition for tent spaces on spaces of homogeneous type, in CMA/AMSI Research Symposium “Asymptotic Geometric Analysis, Harmonic Analysis, and Related Topics”, Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 42 (Austral. Nat. Univ., Canberra, 2007), 125135.Google Scholar
28. Zimmermann, F., On vector-valued Fourier multiplier theorems, Studia Math. 93 (3) (1989), 201222.Google Scholar