Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T03:45:48.293Z Has data issue: false hasContentIssue false

Structural Investigation of AlN/SiOx Nanocomposite Hard Coatings Fabricated by Differential Pumping Cosputtering

Published online by Cambridge University Press:  12 April 2016

Masahiro Kawasaki*
Affiliation:
JEOL USA Inc., 11 Dearborn Road, Peabody, MA 01960, USA
Masateru Nose*
Affiliation:
Faculty of Art and Design, University of Toyama, Takaoka 933-8588, Japan
Ichiro Onishi
Affiliation:
JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
Makoto Shiojiri*
Affiliation:
Kyoto Institute of Technology, Kyoto 606-8585, Japan
Get access

Abstract

AlN/SiOx nanocomposite coatings fabricated by differential pumping cosputtering (DPCS) were investigated by analytical electron microscopy. The DPCS system consists of two halves of a Chamber, A and B, for radio frequency (RF) magnetron sputtering deposition of different materials, and a substrate holder that rotates through the chambers. Al and SiO2 were sputtered in gas environments with a flow mixture of N2 and Ar gases at RF power of 200 W in the Al Chamber A and a flow of Ar gas at RF powers of 49 W in the SiO2 Chamber B. The substrates of (001) Si wafers heated at 250°C were rotated for 1,080 min at 3 rpm and alternately deposited by AlN and SiO2. AlN columnar crystals grew at a rate of ~0.3 nm/revolution preferentially along the hexagonal [0001] axis. Amorphous silicon oxide (a-SiOx), deposited at a rate of ~0.2 nm/revolution, was coagulated preferentially along the boundaries between the AlN columns and also the interfaces between the subgrains within the AlN columns. The a-SiOx played an important role in the increase in mechanical hardness of the AlN/SiOx composite coating by disturbing deformation of AlN crystal lattices.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: 1-297 Wakiyama, Kyoto 618-0091, Japan.

References

Battaglin, G., Cattaruzza, E., Gonella, F., Polloni, R., Scremin, B.F., Mattei, G., Mazzoldi, P. & Sada, C. (2002). Structural and optical properties of Cu:silica nanocomposite films prepared by co-sputtering deposition. Appl Surf Sci 226, 5256.Google Scholar
Chen, M.J., Shih, Y.T., Wu, M.K., Chen, H.C., Tsai, H.L., Li, W.C., Yang, J.R., Kuan, H. & Shiojiri, M. (2010). Structure and ultraviolet electroluminescence of n-ZnO/SiO2-ZnO nanocomposite/p-GaN heterostructure light-emitting diodes. IEEE Trans Electron Devices 57, 21952202.Google Scholar
Chen, Y.Y., Yang, J.R., Cheng, S.L. & Shiojiri, M. (2013). Structural investigation of ZnO:Al films deposited on the Si substrates by radio frequency magnetron sputtering. Thin Solid Films 545, 183187.Google Scholar
Fujimori, H., Mitani, S. & Ohnuma, S. (1996). Tunnel-type GMR in Co-Al-O insulated granular system—Its oxygen-concentration dependence. J Magn Magn Mater 156, 311314.Google Scholar
Holubář, P., Jílek, M. & Šíma, M. (1999). Nanocomposite nc-TiAlSiN and nc-TiN–BN coatings: Their applications on substrates made of cemented carbide and results of cutting tests. Surf Coat Technol 120/121, 184188.Google Scholar
Hsieh, J.H., Chang, C.C., Chang, Y.K. & Cherng, J.S. (1995). Photocatalytic and antibacterial properties of TaON–Ag nanocomposite thin films. Thin Solid Films 518, 72637266.Google Scholar
Kawasaki, M., Nose, M., Onishi, I., Matsuda, K. & Shiojiri, M. (2015). Cr(Al)N/Al2O3 superhard coatings prepared by differential pumping cosputtering: Structure and mechanical properties. Metallogr Microstruct Anal 4, 459466.Google Scholar
Kawasaki, M., Nose, M., Onishi, I. & Shiojiri, M. (2013 a). Structure of multilayered Cr(Al)N/SiOx nanocomposite coatings fabricated by differential pumping co-sputtering. Appl Phys Lett 103, 201913/1201913/4.Google Scholar
Kawasaki, M., Takabatake, H., Onishi, I., Nose, M. & Shiojiri, M. (2013 b). Structural investigation of Cr(Al)N/SiOx films prepared on Si substrates by differential pumping co-sputtering. ACS Appl Mater Interfaces 5, 38333838.Google Scholar
Kong, M., Zhao, W., Wu, Y., Huang, B. & Li, G. (2012). Microstructure, mechanical properties, and high-temperature oxidation resistance of AlN/SiO2 nanomultilayer coatings. J Coat Technol Res 9, 177182.Google Scholar
Lin, J., Moore, J.J., Moerbe, W.C., Pinkas, M., Mishra, B., Doll, G.L. & Sproul, W.D. (2010). Structure and properties of selected (Cr–Al–N, TiC–C, Cr–B–N) nanostructured tribological coatings. Int J Refract Metals Hard Mater 28, 214.Google Scholar
Martinu, L. & Poitras, D. (2000). Plasma deposition of optical films and coatings: A review. J Vac Sci Technol A 18, 26192645.Google Scholar
Mitani, S., Fujimori, H., Furukawa, S. & Ohnuma, S. (1995). High electrical resistivity and Mössbauer effect of soft magnetic FeSiO2 granular alloys. J Magn Magn Mater 140/144, 429430.Google Scholar
Musil, J. (2006). Physical and mechanical properties of hard nanocomposite films prepared by reactive magnetron sputtering. In Nanostructured Coatings (chapter 10 Cabaleiro, A.A. & De Hosson, J.T.M. (Eds.), pp. 407463. New York: Springer.Google Scholar
Nakamura, S., Senoh, M., Nagahara, S., Iwase, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M. & Chocho, K. (1998). InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Appl Phys Lett 72, 211213.Google Scholar
Niederhofer, A., Nesládek, P., Männling, H.-D., Moto, K., Vepřek, S. & Jílek, M. (1999). Structural properties, internal stress and thermal stability of nc-TiN/a-Si3N4, nc-TiN/TiSix and nc-(Ti1−yAlySix)N superhard nanocomposite coatings reaching the hardness of diamond. Surf Coat Technol 120/121, 173178.Google Scholar
Nose, M., Kawabata, T., Watanuki, T., Ueda, S., Fujii, K., Matsuda, K. & Ikeno, S. (2011). Mechanical properties and oxidation resistance of CrAlN/BN nanocomposite coatings prepared by reactive dc and rf cosputtering. Surf Coat Technol 205, s33s37.Google Scholar
Nose, M., Kurimoto, T., Saiki, A., Matsuda, K. & Terayama, K. (2012 a). Deposition of novel nanocomposite films by a newly developed differential pumping co-sputtering system. J Vac Sci Technol A 30, 011502/1011502/7.Google Scholar
Nose, M., Chiou, W.A., Takabatake, H., Satoh, T., Kawabata, T. & Matsuda, K. (2012 b). TEM study of AlN/oxides (SiOx or AlxOy) nanocomposite films prepared by a differential pumping co-sputtering system. Microsc Microanal 18(Suppl 2), 16961697.Google Scholar
Oelhafen, P. & Schüler, A. (2005). Nanostructured materials for solar energy conversion. Sol Energy 79, 110121.Google Scholar
Sella, C., Chenot, S., Reillon, V. & Berthier, S. (2009). Influence of the deposition conditions on the optical absorption of Ag–SiO2 nanocermet thin films. Thin Solid Films 517, 58485854.Google Scholar
Shiojiri, M., Čeh, M., Šturm, S., Chuo, C.C., Hsu, J.T., Yang, J.R. & Saijo, H. (2006). Structural and compositional analysis of a strained AlGaN/GaN superlattice. J Appl Phys 100, 013110/1013110/7.Google Scholar
Stüber, M., Albers, U., Leiste, H., Seemann, K., Ziebert, C. & Ulrich, S. (2008). Magnetron sputtering of hard Cr–Al–N–O thin films. Surf Coat Technol 203, 661665.Google Scholar
Tiwaary, M., Singh, N.K., Annapoorni, S., Agarwal, D.C., Avasthi, D.K., Mishra, Y.K., Mazzoldi, P., Mattei, G., Sada, C., Trave, E. & Battaglin, G. (2011). Enhancement of photoluminescence in Er-doped Ag–SiO2 nanocomposite thin films: A post annealing study. Vacuum 85, 806809.Google Scholar
Veprek, S. & Veprek-Heijman, M.G.J. (2006). Concept for the design of superhard nanocomposites with high thermal stability: Their preparation, properties, and industrial applications. In Nanostructured Coatings (chapter 9 Cabaleiro, A.A. & De Hosson, J.T.M. (Eds.), pp. 347406. New York: Springer.Google Scholar
Wang, C.M., Hsieh, J.H., Fu, Y.Q., Li, C., Chen, T.P. & Lam, U.T. (2004). Electrical properties of TaN–Cu nanocomposite thin films. Ceram Int 30, 18791883.Google Scholar
Watanabe, K., Yang, J.R., Nakanishi, N., Inoke, K. & Shiojiri, M. (2002). Direct determination of atomic structure in MQW-InGaN/GaN. Appl Phys Lett 80, 761762.Google Scholar