Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T09:42:43.028Z Has data issue: false hasContentIssue false

A Complete Overhaul of the Electron Energy-Loss Spectroscopy and X-Ray Absorption Spectroscopy Database: eelsdb.eu

Published online by Cambridge University Press:  22 February 2016

Philip Ewels
Affiliation:
Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden
Thierry Sikora
Affiliation:
Savantic AB, Rosenlundsgatan 50, 118 63 Stockholm, Sweden
Virginie Serin
Affiliation:
CEMES, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse, France
Chris P. Ewels
Affiliation:
Institut des Matériaux Jean Rouxel (IMN), CNRS, Université de Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France
Luc Lajaunie*
Affiliation:
Institut des Matériaux Jean Rouxel (IMN), CNRS, Université de Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France
*
*Corresponding author. lajaunie@unizar.es
Get access

Abstract

The electron energy-loss spectroscopy (EELS) and X-ray absorption spectroscopy (XAS) database has been completely rewritten, with an improved design, user interface, and a number of new tools. The database is accessible at https://eelsdb.eu/ and can now be used without registration. The submission process has been streamlined to encourage spectrum submissions and the new design gives greater emphasis on contributors’ original work by highlighting their papers. With numerous new filters and a powerful search function, it is now simple to explore the database of several hundred EELS and XAS spectra. Interactive plots allow spectra to be overlaid, facilitating online comparison. An application-programming interface has been created, allowing external tools and software to easily access the information held within the database. In addition to the database itself, users can post and manage job adverts and read the latest news and events regarding the EELS and XAS communities. In accordance with the ongoing drive toward open access data increasingly demanded by funding bodies, the database will facilitate open access data sharing of EELS and XAS spectra.

Type
Papers from the 4th Joint Congress of the Portuguese and Spanish Microscopy Societies
Copyright
Copyright © Microscopy Society of America 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Laboratorio de Microscopías Avanzadas, Instituto de Nanociencia de Aragón, Universidad de Zaragoza, 50018 Zaragoza, España.

References

d’Acapito, F., Mobilio, S., Gastaldo, P., Barbier, D., Santos, L.F., Martins, O. & Almeida, R.M. (2001). Local order around Er3+ ions in SiO2–TiO2–Al2O3 glassy films studied by EXAFS. J Non Cryst Solids 293, 118124.Google Scholar
Arenal, R., Henrard, L., Roiban, L., Ersen, O., Burgin, J. & Treguer-Delapierre, M. (2014 a). Local plasmonic studies on individual core–shell gold–silver and pure gold nano-bipyramids. J Phys Chem C 118, 2564325650.Google Scholar
Arenal, R., March, K., Ewels, C.P., Rocquefelte, X., Kociak, M., Loiseau, A. & Stéphan, O. (2014 b). Atomic configuration of nitrogen-doped single-walled carbon nanotubes. Nano Lett 14, 55095516.Google Scholar
Arenal, R., Stéphan, O., Kociak, M., Taverna, D., Loiseau, A. & Colliex, C. (2008). Optical gap measurements on individual boron nitride nanotubes by electron energy loss spectroscopy. Microsc Microanal 14, 274282.Google Scholar
Arevalo-Lopez, A.M. & Alario-Franco, M.A. (2009). Reliable method for determining the oxidation state in chromium oxides. Inorg Chem 48, 1184311846.Google Scholar
Banerjee, S., Hemraj-Benny, T., Sambasivan, S., Fischer, D.A., Misewich, J.A. & Wong, S.S. (2005). Near-edge X-ray absorption fine structure investigations of order in carbon nanotube-based systems. J Phys Chem B 109, 84898495.Google Scholar
bbPress (2015). Forums, made the WordPress way. Available at https://bbpress.org (retrieved January 11, 2015).Google Scholar
Calvert, C.C., Brown, A. & Brydson, R. (2005). Determination of the local chemistry of iron in inorganic and organic materials. J Electron Spectros Relat Phenomena 143, 173187.Google Scholar
Carroll, M.W. (2015). Sharing research data and intellectual property law: A primer. PLoS Biol 13, e1002235.Google Scholar
Contact Form 7 (2015). A contact formular for WordPress. Available at http://contactform7.com/ (retrieved January 11, 2015).Google Scholar
crossref (2015). The official DOI registration agency of the international DOI foundation. Available at http://www.crossref.org (retrieved January 11, 2015).Google Scholar
Danet, J., Brousse, T., Rasim, K., Guyomard, D. & Moreau, P. (2010). Valence electron energy-loss spectroscopy of silicon negative electrodes for lithium batteries. Phys Chem Chem Phys 12, 220226.Google Scholar
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Springer Science+Business Media.Google Scholar
Garcia de Abajo, F.J. (2010). Optical excitations in electron microscopy. Rev Mod Phys 82, 209275.Google Scholar
Garvie, L.A., Craven, A.J. & Brydson, R. (1994). Use of electron-energy loss near-edge fine structure in the study of minerals. Am Mineral 79, 411425.Google Scholar
Gražulis, S., Daškevič, A., Merkys, A., Chateigner, D., Lutterotti, L., Quirós, M., Serebryanaya, N.R., Moeck, P., Downs, R.T. & Le Bail, A. (2012). Crystallography Open Database (COD): An open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res 40, D420D427.Google Scholar
Gu, L., Özdöl, V., Sigle, W., Koch, C., Srot, V. & van Aken, P. (2010). Correlating the structural, chemical, and optical properties at nanometer resolution. J Appl Phys 107, 013501.Google Scholar
Hakouk, K., Deniard, P., Lajaunie, L., Guillot-Deudon, C., Harel, S., Wang, Z., Huang, B., Koo, H.-J., Whangbo, M.-H., Jobic, S. & Dessapt, R. (2013). Novel soft-chemistry route of Ag2Mo3O10.2H2O nanowires and in situ photogeneration of a Ag@ Ag2Mo3O10.2H2O plasmonic heterostructure. Inorg Chem 52, 64406449.Google Scholar
HighCharts (2015). Interactive JavaScript charts for your webpage. Available at http://www.highcharts.com (retrieved October 28, 2015).Google Scholar
Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G. & Persson, K.-A. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater 1, 011002.Google Scholar
Jaouen, M., Tourillon, G., Delafond, J., Junqua, N. & Hug, G. (1995). A NEXAFS characterization of ion-beam-assisted carbon-sputtered thin films. Diam Relat Mater 4, 200206.Google Scholar
Krüger, P. (2010). Multichannel multiple scattering calculation of L23-edge spectra of TiO2 and SrTiO3: Importance of multiplet coupling and band structure. Phys Rev B 81, 125121.Google Scholar
Lajaunie, L., Boucher, F., Dessapt, R. & Moreau, P. (2013). Strong anisotropic influence of local-field effects on the dielectric response of α-MoO3. Phys Rev B 88, 115141.Google Scholar
Lajaunie, L., Boucher, F., Dessapt, R. & Moreau, P. (2015). Quantitative use of electron energy-loss spectroscopy Mo-M2,3 edges for the study of molybdenum oxides. Ultramicroscopy 149, 18.Google Scholar
Leon, A., Kircher, O., Rothe, J. & Fichtner, M. (2004). Chemical state and local structure around titanium atoms in NaAlH4 doped with TiCl3 using X-ray absorption spectroscopy. J Phys Chem B 108, 1637216376.Google Scholar
Mizoguchi, T., Olovsson, W., Ikeno, H. & Tanaka, I. (2010). Theoretical ELNES using one-particle and multi-particle calculations. Micron 41, 695709.Google Scholar
Moreau, P. & Boucher, F. (2012). Revisiting lithium K and iron M2,3 edge superimposition: The case of lithium battery material LiFePO4. Micron 43, 1621.Google Scholar
Núñez-González, R., Reyes-Serrato, A., Galván, D.H. & Posada-Amarillas, A. (2010). DFT calculation of the electronic properties and EEL spectrum of NiSi2. Comput Mater Sci 49, 1520.Google Scholar
OECD (2015). Making Open Science a reality. OECD Report, Paris. Available at http://dx.doi.org/10.1787/5jrs2f963zs1-en (retrieved October 15, 2015).Google Scholar
Oleshko, V.P. (2012). The use of plasmon spectroscopy and imaging in a transmission electron microscope to probe physical properties at the nanoscale. J Nanosci Nanotechnol 12, 85808588.Google Scholar
Oleshko, V.P. & Howe, J.M. (2007). In situ determination and imaging of physical properties of metastable and equilibrium precipitates using valence electron energy-loss spectroscopy and energy-filtering transmission electron microscopy. J Appl Phys 101, 054308.Google Scholar
Pampel, H., Vierkant, P., Scholze, F., Bertelmann, R., Kindling, M., Klump, J., Goebelbecker, H., Gundlach, J., Schirmbacher, P. & Dierolf, U. (2012). Making research data repositories visible: The re3data. org Registry. PloS One 8, e78080.Google Scholar
Panchakarla, L.S., Lajaunie, L., Tenne, R. & Arenal, R. (2015). Atomic structural studies on thin single-crystalline misfit-layered nanotubes of TbS-CrS2. J Phys Chem C, http://dx.doi.org/10.1021/acs.jpcc.5b05811 (in press).Google Scholar
Peña, F.d. l., Burdet, P., Ostasevicius, T., Sarahan, M., Nord, M., Taillon, V.T.F.J., Eljarrat, A., Mazzucco, S., Donval, G., Zagonel, L.F., Walls, M. & Iyengar, I. (2015). HyperSpy: Multidimensional data analysis toolbox. Available at http://dx.doi.org/10.5281/zenodo.27735 (retrieved January 11, 2015).Google Scholar
Shumilova, T., Mayer, E. & Isaenko, S. (2011). Natural monocrystalline lonsdaleite. Dokl Earth Sci 441, 15521554.Google Scholar
Sikora, T. & Serin, V. (2008). The EELS spectrum database. In EMC 2008 14th European Microscopy Congress, Aachen, Berlin, Germany, September 1–5, 2008, pp. 439–440, Springer.Google Scholar
Verbeeck, J. & Van Aert, S. (2004). Model based quantification of EELS spectra. Ultramicroscopy 101, 207224.Google Scholar
Wang, Z., Dupré, N., Lajaunie, L., Moreau, P., Martin, J.F., Boutafa, L., Patoux, S. & Guyomard, D. (2012). Effect of glutaric anhydride additive on the LiNi0.04Mn1.6O4 electrode/electrolyte interface evolution: A MAS NMR and TEM/EELS study. J Power Sources 215, 170178.Google Scholar
WordPress (2015). A free and open-source content management system. Available at http://wordpress.org (retrieved January 11, 2015).Google Scholar
WP Job Manager (2015). A lightweight, open source job board plugin for WordPress. Available at https://wpjobmanager.com/ (retrieved January 11, 2015).Google Scholar
Zenodo (2015). An open digital repository hosted by the CERN. Available at https://zenodo.org (retrieved January 11, 2015).Google Scholar
Zhang, L., Turner, S., Brosens, F. & Verbeeck, J. (2010). Model-based determination of dielectric function by STEM low-loss EELS. Phys Rev B 81, 035102.Google Scholar
Zhang, S., Livi, K.J., Gaillot, A.-C., Stone, A.T. & Veblen, D.R. (2010). Determination of manganese valence states in (Mn3+, Mn4+) minerals by electron energy-loss spectroscopy. Am Mineral 95, 17411746.Google Scholar
Zhang, W., Zhang, B., Wolfram, T., Shao, L., Schlögl, R. & Su, D.S. (2011). Probing a redox behavior of TiO2/SBA-15 supported VXOY catalyst using an electron beam in a 200 kV transmission electron microscope. J Phys Chem C 115, 2055020554.Google Scholar
Zhu, G., Lazar, S., Knights, A.P. & Botton, G. (2013). Atomic-level 2-dimensional chemical mapping and imaging of individual dopants in a phosphor crystal. Phys Chem Chem Phys 15, 1142011426.Google Scholar