Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-03T11:08:27.774Z Has data issue: false hasContentIssue false

II-VI Material Integration With Silicon for Detector and PV Applications

Published online by Cambridge University Press:  06 June 2016

T.A. Gessert*
Affiliation:
EPIR Inc. Bolingbrook, IL 60440
E. Colegrove
Affiliation:
University of Illinois at Chicago, Physics Department, Chicago, IL 60612
B. Stafford
Affiliation:
University of Illinois at Chicago, Physics Department, Chicago, IL 60612
R. Kodama
Affiliation:
EPIR Inc. Bolingbrook, IL 60440
Wei Gao
Affiliation:
University of Illinois at Chicago, Physics Department, Chicago, IL 60612
H.R. Moutinho
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
D. Kuciauskas
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
R.C. Reedy
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
T.M. Barnes
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
S. Sivananthan
Affiliation:
University of Illinois at Chicago, Physics Department, Chicago, IL 60612
*
Get access

Abstract

Heteroepitaxial growth of high-quality II-VI-alloy materials on Si substrates is a well-established commercial growth process for infrared (IR) detector devices. However, it has only recently been recognized that these same processes may have important applications for production of high-efficiency photovoltaic devices. This submission reviews the process developments that have enabled effective heteroepitaxy of II-VI alloy materials on lattice-mismatched Si for IR detectors as a foundation to describe recent efforts to apply these insights to the fabrication of multijunction Si/CdZnTe devices with ultimate conversion efficiencies >40%. Reviewed photovoltaic studies include multijunction Si/CdZnTe devices with conversion efficiency of ∼17%, analysis of structural and optoelectrical quality of undoped CdTe epilayer films on Si, and the effect that a Te-rich growth environment has on the structural and optoelectronic quality of both undoped and As-doped heteroepitaxial CdTe.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., “Solar Cell Efficiency Tables (Version 45),” Prog. in Photovoltaics: Research and Applications 23 19 (2015).CrossRefGoogle Scholar
Kodama, R., EPIR Inc. Personal Communication.Google Scholar
Garland, J.W., Biegala, T., Carmody, M., Gilmore, C., Sivananthan, S., “Next-Generation Multijunction Solar Cells: The Promise of II-VI Materials,” J. Appl. Phys. 109 102423 (2011).CrossRefGoogle Scholar
Yang, J-H, Yin, W-J., Park, J-S., Burst, J., Metzger, W.K., Gessert, T., Barnes, T., and Wei, S-H., “Enhanced p-type Dopability of P and As in CdTe Using Non-Equlibrium Thermal Processing, JK. J. Appl. Phys., 118, 025102 (2015).CrossRefGoogle Scholar
Carmody, M., Mallick, S., Margetis, J., Kodama, R., Biegala, T., Xu, D., Bechmann, P., Garland, J.W., and Sivanathan, S., “Single-Crystal II-VI on Si Single-Junction and Tandem Solar Cells,” Appl. Phys. Lett. 96, 153502 (2010).CrossRefGoogle Scholar
Rujirawat, S., Almeida, L.A., Chen, Y.P., Sivananthan, S., and Smith, D.J., “High quality large-area CdTe(211)B on Si(211) grown by molecular beam epitaxy,” Appl. Phys. Lett., 71, pp. 18101812, 1997.CrossRefGoogle Scholar
Smith, D.J., Tsen, S.C.Y., Chandrasekhar, D., Crozier, P.A., Rujirawat, S., Brill, G., Chen, Y.P., Sporken, R., and Sivananthan, S., “Growth and characterization of CdTe/Si heterostructures –Effect of substrate orientation,” Materials Science and Engineering: B, 77, pp. 93100, 2000.CrossRefGoogle Scholar
Kuciauskas, D., Farrell, S., Dippo, P., Mosley, J., Moutinho, H., Li, J.V., Allende Motz, A.M., Kanevce, A., Zaunbrecher, K., Gessert, T.A., Levi, D., Metzger, W.K., Colegrove, E., and Sivananthan, S., “Charge carrier transport and recombination in heteroepitaxial CdTe,” J. Appl. Physics, vol. 116(12), pp. 123108, 2014.CrossRefGoogle Scholar
Gessert, T.A., Dhere, R., Kuciauskas, D., Moseley, J., Moutinho, H., Romero, M.J., Al-Jassim, M., and Colegrove, E., Kodama, R., and Sivanathan, S., “Development of CdTe on Si Heteroepilayers for Controlled PV Materials and Device Studies,” Mater. Res. Soc. Symp. Proc. 1538 243248 (2013).CrossRefGoogle Scholar
Kanevce, A., Kuciauskas, D., Gessert, T., Levi, D.H., and Albin, D., “Impact of Interface Recombination on Time Resolved Photoluminescence (TRPL) Decays in CdTe Solar cells (Numerical Simulation Analysis),” Proc. 38th IEEE Photovoltaic Specialists Conf., Austin, TX (2012).CrossRefGoogle Scholar
Gessert, T.A., Wei, S.-H., Ma, J., Albin, D.S., Dhere, R.G., Duenow, J.N., Kuciauskas, D., Kanevce, A., Barnes, T.M., and Moutinho, H.R., “Research Strategies Toward Improving Thin-Film CdTe Photovoltaic Devices Beyond 20% Conversion Efficiency,” Solar Energy Materials and Solar Cells, 119, pp. 149155 (2013).CrossRefGoogle Scholar
Ma, J., Kuciauskas, D., Albin, D., Bhattacharya, R., Reese, M., Barnes, T., Li, J.V., Gessert, T., and Wei, S.-H., “Dependence of the Minority-Carrier Lifetime on the Stoichiometry of CdTe Using Time Resolved Photoluminescence and First Principles Calculations,” Phys. Rev. Lett. 111 067402, (2013).CrossRefGoogle Scholar
Strevel, N., Trippel, L., Kotarba, C., and Khan, I., “Improvements in CdTe Module Reliability and Long-Term Degradation through Advances in Construction and Device Innovation,” Photovolt. Int. 22. pp. 6674 (2013).Google Scholar
Wei, S-H. and Zhang, S.B., “Chemical Trends of Defect Formation and Doping Limit in II-VI Semiconductors: The Case of CdTe,” Phys. Rev. B 66 155211 (2002).CrossRefGoogle Scholar
Farrell, S., Barnes, T., Metzger, W.K., Park, J.H., Kodama, R., and Sivananthan, S., “In Situ Arsenic Doping of CdTe/Si by Molecular Beam Epitaxy,J. Elect. Mater. 44(9) p. 3202 (2015).CrossRefGoogle Scholar
Park, J.H., Farrell, S., Kodama, R., Blissett, C., Wang, X., Colegrove, E., Metezger, W.K., Gessert, T.A., and Sivananthan, S., Incorporation and Activation of Arsenic Dopant in Single Crystal CdTe on Si by MBE,“ J. Electron. Mater. 43(8) p. 2998 (2014).CrossRefGoogle Scholar
Barnes, T.M., Myers, T.H., Edirisooriya, M., Ogedengbe, O.S., Kuciauskas, D., Harvey, S., Gorman, B.P., Pool, V. =L., Ablekim, T., Lynn, K.G., Saunbrecher, K., Seyedmohammadi, S., and Malik, R., “Dopant Incorporation and Activation in Epitaxial CdTe, Proc. 42 nd Photovolt. Spec. Conf, New Orleans (2015).Google Scholar
Burton, G.L., Diercks, D.R., and Gorman, B.P., “Dopant and Interfacial Analysis of Epitaxial CdTe using Atom Probe Tomography”, Microscopy and Microanalysis, S2 (2015).Google Scholar
Chen, A. C., Zandian, M., Edwall, D. D., De Wames, R. E., Wijewarnasuriya, P. S., Arias, J. M., Sivananthan, S., Berding, M., Sher, A.. “MBE Growth and Characterization of In Situ Arsenic Doped HgCdTe.” J. Elect. Mater. 27(6) pp. 595599 (1998).CrossRefGoogle Scholar
Gessert, T.A., Barnes, T.M., Colegrove, E., Stafford, B., Farrell, S., Moutinho, H.. U.S. Patent Application No. 62/173,487 and 62/236,047.Google Scholar