Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T07:23:47.696Z Has data issue: false hasContentIssue false

Strong Red Luminescent Twin ZnO Nanorods for Nano-thermometry Application

Published online by Cambridge University Press:  24 February 2016

Avanendra Singh
Affiliation:
School of Physical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Odisha-751005, India
Kartik Senapati
Affiliation:
School of Physical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Odisha-751005, India
Karuna Kar Nanda
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore-560012, India
Pratap K. Sahoo*
Affiliation:
School of Physical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Odisha-751005, India
Get access

Abstract

Two segments of horizontally grown crystalline ZnO nanorods (NRs) connected with an amorphous layer have been successfully and reproducibly synthesized using one-step hydrothermal technique by controlling the growth rate. The confocal photoluminescence (PL) imaging and spectroscopy of twin ZnO NRs at different temperatures shows intense red emission with comparably week UV emission. The strong red emission from the twin NRs is a consequence of structural imperfections. Both UV and red bands showed signatures of strong temperature dependent exciton-phonon scattering. Using the intensity ratio of the UV and red emissions, we show that the individual ZnO NRs can be used as highly sensitive cryogenic temperature sensors below ∼175 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kong, Y. C., Yu, D. P., Zhang, B., Fang, W., and Feng, S. Q., Applied Physics Letters, 78, 407409 (2001)Google Scholar
Tian, Z. T. Jr.White, B. E., and Sun, Y., Appl. Phys. Lett. 96, 263113 (2010).Google Scholar
Yang, N., Xu, X., Zhang, G., and Li, B., AIP Advances 2, 041410 (2012).Google Scholar
Mao, Michael H. H. S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P., Science, 292, 1897 (2001).CrossRefGoogle Scholar
Zhang, S. B., Wei, S.-H., and Zunger, Alex, Phys. Rev. B 63, 075205 (2001).Google Scholar
Li, B., Wang, J., Phys. Rev. Lett. 91, 044301 (2003).Google Scholar
Djurišić, A. B., Ng, A. M. C., and Chen, X. Y., Progress in Quantum Electronics. 34, 191 (2010).Google Scholar
Law, M., Greene, L. E., Johnson, J. C., Saykally, R., and Yang, P., Nat. Mater. 4, 455 (2005).Google Scholar
Yan, B., Chen, R., Zhou, W., Zhang, J., Sun, H., Gong, H., and Yu, T., Nanotechnology 21, 445706 (2010).Google Scholar
Hong, W. K., Jo, G., Choe, M., Lee, T., Sohn, J. I., and Welland, M., Appl. Phys. Lett. 94, 043103 (2009).CrossRefGoogle Scholar
Kim, S. Y., Yeon, Y. S., Park, S. M., Kim, J. H., and Song, J. K., Chemical Physics Letters 462 100 (2008).CrossRefGoogle Scholar
Singh, A., Senapati, K., Satpati, B., Kumar, M. and Sahoo, P. K., Phys. Chem. Chem. Phys., 17, 4277 (2015)CrossRefGoogle Scholar
Sindhe, S. L., K.K. Nanda Angew. Chem. Int. Ed. 52, 11325, (2013).Google Scholar
Brites, C. D. S., Lima, P. P., Silva, N. J. O., Millan, A., Amaral, V. S., Palacio, F., Carlos, L. D., Nanoscale, 4, 4799 (2012).CrossRefGoogle ScholarPubMed
Voss, T., Bekeny, C., Wischmeier, L., Gafsi, H., Borner, S., Schade, W., Mofor, A. C., Bakin, A., Waag, A., Appl. Phys. Lett. 89, 182107 (2006).Google Scholar
Okabe, K., Inada, N., Gota, C., Harada, Y., Funatsu, T., Uchiyama, S., Nat. Commun. 3, 705 (2012).Google Scholar
Gomi, M., Oohira, N., Ozaki, K., Koyano, M., Jpn. J. Appl. Phys., 42, 481485 (2003).Google Scholar
Permogorov, S. A., in Excitons, edited by Rashba, E. I. and Sturge, M. D. (North-Holland, Amsterdam, 1982), Vol. 2, p. 177.Google Scholar
Lucca, D. A., Hamby, D. W., Klopfstein, M. J., and Cantwell, G., Phys. Status Solidi B 229, 845 (2002).Google Scholar
Verbin, S. Yu., Permogorov, S. A., Reznitskii, A. N., and Starukhin, A. N., Sov. Phys. Solid State 19, 11 (1977).Google Scholar