Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-14T03:08:17.993Z Has data issue: false hasContentIssue false

Cerebellar, but not Motor or Parietal, High-Density Anodal Transcranial Direct Current Stimulation Facilitates Motor Adaptation

Published online by Cambridge University Press:  06 May 2016

Michael Doppelmayr*
Affiliation:
Institute of Sport Science, University of Mainz, Germany Centre for Cognitive Neuroscience, Salzburg, Austria
Nils Henrik Pixa
Affiliation:
Institute of Sport Science, University of Mainz, Germany
Fabian Steinberg
Affiliation:
Institute of Sport Science, University of Mainz, Germany
*
Correspondence and reprint requests to: Michael Doppelmayr, Institute of Sport Science, University Mainz, Albert Schweitzer Straße 22, 55128 Mainz Germany. E-mail: doppelma@uni-mainz.de

Abstract

Objectives: Although motor adaptation is a highly relevant process for both everyday life as well as rehabilitation many details of this process are still unresolved. To evaluate the contribution of primary motor (M1), parietal and cerebellar areas to motor adaptation processes transcranial direct current stimulation (tDCS) has been applied. We hypothesized that anodal stimulation of the cerebellum and the M1 improves the learning process in mirror drawing, a task involving fine grained and spatially well-organized hand movements. Methods: High definition tDCS (HD-tDCS) allows a focal stimulation to modulate brain processes. In a single-session double-blind study, we compared the effects of different anodal stimulation procedures. The groups received stimulation either at the cerebellum (CER), at right parietal (PAR), or at left M1, and a SHAM group was included. Participants (n=83) had to complete several mirror drawing tasks before, during, and after stimulation. They were instructed to re-trace a line in the shape of a pentagonal star as fast and accurate as possible. Tracing time (seconds) and accuracy (deviation in mm) have been evaluated. Results: The results indicated that cerebellar HD-tDCS can facilitate motor adaptation in a single session. The stimulation at M1 showed only a tendency to increase motor adaptation and these effects were visible only during the first part of the stimulation. Stimulating the right parietal area, relevant for visuospatial processing did not lead to increased performance. Conclusions: Our results suggest that motor adaptation relies to a great extent on cerebellar functions and HD-tDCS can speed up this process. (JINS, 2016, 22, 928–936)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antal, A., Keeser, D., Priori, A., Padberg, F., & Nitsche, M.A. (2015). Conceptual and procedural shortcomings of the systematic review “evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond mep amplitude modulation in healthy human subjects: A systematic review” by Horvath and Co-workers. Brain Stimulation, 8, 846849. doi:10.1016/j.brs.2015.05.010 Google Scholar
Antal, A., Nitsche, M.A., Kincses, T.Z., Kruse, W., Hoffmann, K., & Paulus, W. (2004). Facilitation of visuo‐motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. The European Journal of Neuroscience, 19, 28882892. doi:10.1111/j.1460-9568.2004.03367.x Google Scholar
Antal, A., Nitsche, M.A., Kruse, W., Kincses, T.Z., Hoffmann, K.-P., & Paulus, W. (2004). Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. Journal of Cognitive Neuroscience, 16(4), 521527. doi:10.1162/089892904323057263 Google Scholar
Antal, A., Nitsche, M.A., & Paulus, W. (2006). Transcranial direct current stimulation and the visual cortex. Brain Research Bulletin, 68(6), 459463. doi:10.1016/j.brainresbull.2005.10.006 Google Scholar
Antal, A., & Paulus, W. (2008). Transcranial direct current stimulation and visual perception. Perception, 37(3), 367374. doi:10.1068/p5872 Google Scholar
Antal, A., Polania, R., Schmidt-Samoa, C., Dechent, P., & Paulus, W. (2011). Transcranial direct current stimulation over the primary motor cortex during fMRI. Neuroimage, 55(2), 590596.Google Scholar
Antal, A., Varga, E.T., Kincses, T.Z., Nitsche, M.A., & Paulus, W. (2004). Oscillatory brain activity and transcranial direct current stimulation in humans. Neuroreport, 15(8), 13071310.Google Scholar
Bolognini, N., Fregni, F., Casati, C., Olgiati, E., & Vallar, G. (2010). Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills. Brain Research, 1349, 7689. doi:10.1016/j.brainres.2010.06.053 Google Scholar
Bolognini, N., Olgiati, E., Rossetti, A., & Maravita, A. (2010). Enhancing multisensory spatial orienting by brain polarization of the parietal cortex. The European Journal of Neuroscience, 31(10), 18001806. doi:10.1111/j.1460-9568.2010.07211.x Google Scholar
Bolognini, N., Pascual-Leone, A., & Fregni, F. (2009). Using non-invasive brain stimulation to augment motor training-induced plasticity. Journal of Neuroengineering and Rehabilitation, 6, 8. doi:10.1186/1743-0003-6-8 Google Scholar
Bolognini, N., Vallar, G., Casati, C., Latif, L.A., El-Nazer, R., Williams, J., & Fregni, F. (2011). Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients. Neurorehabilitation and Neural Repair, 25(9), 819829. doi:10.1177/1545968311411056 CrossRefGoogle ScholarPubMed
Cantarero, G., Spampinato, D., Reis, J., Ajagbe, L., Thompson, T., Kulkarni, K., & Celnik, P. (2015). Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy. The Journal of Neuroscience, 35(7), 32853290. doi:10.1523/JNEUROSCI.2885-14.2015 Google Scholar
Dmochowski, J.P., Datta, A., Bikson, M., Su, Y., & Parra, L.C. (2011). Optimized multi-electrode stimulation increases focality and intensity at target. Journal of Neural Engineering, 8(4), 46011. doi:10.1088/1741-2560/8/4/046011 CrossRefGoogle ScholarPubMed
Doyon, J., Penhune, V., & Ungerleider, L.G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41(3), 252262. doi:10.1016/S0028-3932(02)00158-6 Google Scholar
Galea, J.M., Vazquez, A., Pasricha, N., de Xivry, J.J., & Celnik, P. (2011). Dissociating the roles of the cerebellum and motor cortex during adaptive learning: The motor cortex retains what the cerebellum learns. Cerebral Cortex, 21(8), 17611770. doi:10.1093/cercor/bhq246 Google Scholar
Gottlieb, J., & Snyder, L.H. (2010). Spatial and non-spatial functions of the parietal cortex. Current Opinion in Neurobiology, 20(6), 731740. doi:10.1016/j.conb.2010.09.015 Google Scholar
Grimaldi, G., Argyropoulos, G.P., Boehringer, A., Celnik, P., Edwards, M.J., Ferrucci, R., & Ziemann, U. (2014). Non-invasive cerebellar stimulation--A consensus paper. Cerebellum, 13(1), 121138. doi:10.1007/s12311-013-0514-7 CrossRefGoogle ScholarPubMed
Halsband, U., & Lange, R.K. (2006). Motor learning in man: A review of functional and clinical studies. Journal of Physiology, Paris, 99(4–6), 414424. doi:10.1016/j.jphysparis.2006.03.007 CrossRefGoogle Scholar
Herrmann, C.S., Rach, S., Neuling, T., & Strüber, D. (2013). Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes. Frontiers in Human Neuroscience, 7, 279. doi:10.3389/fnhum.2013.00279 Google Scholar
Jayaram, G., Tang, B., Pallegadda, R., Vasudevan, E.V.L., Celnik, P., & Bastian, A. (2012). Modulating locomotor adaptation with cerebellar stimulation. Journal of Neurophysiology, 107(11), 29502957. doi:10.1152/jn.00645.2011 Google Scholar
Jeuptner, M., & Weiller, C. (1998). A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain, 121, 14371449.Google Scholar
Keel, J.C., Smith, M.J., & Wassermann, E.M. (2000). A safety screening questionnaire for transcranial magnetic stimulation. Clinical Neurophysiology, 112, 720.Google Scholar
Liebetanz, D. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain, 125(10), 22382247. doi:10.1093/brain/awf238 Google Scholar
Mesulam, M.M. (1981). A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10(4), 309325. doi:10.1002/ana.410100402 Google Scholar
Miranda, P.C., Mekonnen, A., Salvador, R., & Ruffini, G. (2013). The electric field in the cortex during transcranial current stimulation. Neuroimage, 70, 4858. doi:10.1016/j.neuroimage.2012.12.034 Google Scholar
Nitsche, M.A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527(3), 633639. doi:10.1111/j.1469-7793.2000.t01-1-00633.x CrossRefGoogle ScholarPubMed
Nitsche, M.A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 18991901. doi:10.1212/WNL.57.10.1899 Google Scholar
Nitsche, M.A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., & Tergau, F. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15(4), 619626. doi:10.1162/089892903321662994 Google Scholar
Nitsche, M.A., Seeber, A., Frommann, K., Klein, C.C., Rochford, C., Nitsche, M.S., & Tergau, F. (2005). Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. Journal of Physiology, 568(1), 291303. doi:10.1113/jphysiol.2005.092429.Google Scholar
Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97113. doi:10.1016/0028-3932(71)90067-4 Google Scholar
Parazzini, M., Rossi, E., Ferrucci, R., Liorni, I., Priori, A., & Ravazzani, P. (2014). Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans. Clinical Neurophysiology, 125(3), 577584. doi:10.1016/j.clinph.2013.09.039 Google Scholar
Paulus, W. (2011). Transcranial electrical stimulation (tES - tDCS; tRNS, tACS) methods. Neuropsychological Rehabilitation, 21, 3741.Google Scholar
Penhune, V.B., & Steele, C.J. (2012). Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behavioural Brain Research, 226(2), 579591. doi:10.1016/j.bbr.2011.09.044 Google Scholar
Peters, M.A., Thompson, B., Merabet, L.B., Wu, A.D., & Shams, L. (2013). Anodal tDCS to V1 blocks visual perceptual learning consolidation. Neuropsychologia, 51(7), 12341239. doi:10.1016/j.neuropsychologia.2013.03.013 Google Scholar
Pirulli, C., Fertonani, A., & Miniussi, C. (2014). Is neural hyperpolarization by cathodal stimulation always detrimental at the behavioral level? Frontiers in Behavioral Neuroscience, 8(110), 387. doi:10.3389/fnbeh.2014.00226 CrossRefGoogle ScholarPubMed
Priori, A. (2003). Brain polarization in humans: A reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clinical Neurophysiology, 114(4), 589595. doi:10.1016/S1388-2457(02)00437-6 Google Scholar
Reis, J., & Fritsch, B. (2011). Modulation of motor performance and motor learning by transcranial direct current stimulation. Current Opinion in Neurology, 24(6), 590596. doi:10.1097/WCO.0b013e32834c3db0 Google Scholar
Reis, J., Schambra, H.M., Cohen, L.G., Buch, E.R., Fritsch, B., Zarahn, E., & Krakauer, J.W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 15901595. doi:10.1073/pnas.0805413106 Google Scholar
Riedel, M.C., Ray, K.L., Dick, A.S., Sutherland, M.T., Hernandez, Z., Fox, P.M., & Laird, A.R. (2015). Meta-analytic connectivity and behavioral parcellation of the human cerebellum. Neuroimage, 117, 327342. doi:10.1016/j.neuroimage.2015.05.008 Google Scholar
Rossi, S., Hallett, M., Rossini, P.M., & Pascual-Leone, A. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology, 120(12), 20082039. doi:10.1016/j.clinph.2009.08.016 Google Scholar
Ruffini, G., Fox, M.D., Ripolles, O., Miranda, P.C., & Pascual-Leone, A. (2014). Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. Neuroimage, 89, 216225. doi:10.1016/j.neuroimage.2013.12.002 Google Scholar
Ruffini, G., Wendling, F., Merlet, I., Molaee-Ardekani, B., Mekonnen, A., Salvador, R., & Miranda, P.C. (2013). Transcranial current brain stimulation (tCS): Models and technologies. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(3), 333345. doi:10.1109/TNSRE.2012.2200046 Google Scholar
Stagg, C.J., Jayaram, G., Pastor, D., Kincses, Z.T., Matthews, P.M., & Johansen-Berg, H. (2011). Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia, 49(5), 800804. doi:10.1016/j.neuropsychologia.2011.02.009 Google Scholar
Stoodley, C.J., & Schmahmann, J.D. (2009). Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. Neuroimage, 44(2), 489501. doi:10.1016/j.neuroimage.2008.08.039 Google Scholar
Suchan, J., & Karnath, H.-O. (2011). Spatial orienting by left hemisphere language areas: A relict from the past? Brain, 134(Pt 10), 30593070. doi:10.1093/brain/awr120 Google Scholar
Vicario, C.M., Martino, D., & Koch, G. (2013). Temporal accuracy and variability in the left and right posterior parietal cortex. Neuroscience, 245, 121128. doi:10.1016/j.neuroscience.2013.04.041 Google Scholar
Vines, B.W., Nair, D.G., & Schlaug, G. (2006). Contralateral and ipsilateral motor effects after transcranial direct current stimulation. Neuroreport, 17(6), 671674.Google Scholar
Vollmann, H., Conde, V., Sewerin, S., Taubert, M., Sehm, B., Witte, O.W., & Ragert, P. (2013). Anodal transcranial direct current stimulation (tDCS) over supplementary motor area (SMA) but not pre-SMA promotes short-term visuomotor learning. Brain Stimulation, 6(2), 101107. doi:10.1016/j.brs.2012.03.018 Google Scholar