Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T18:17:40.027Z Has data issue: false hasContentIssue false

THE DUFFIN–SCHAEFFER-TYPE CONJECTURES IN VARIOUS LOCAL FIELDS

Published online by Cambridge University Press:  06 May 2016

Liangpan Li*
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, U.K. email L.Li@lboro.ac.uk
Get access

Abstract

In this paper we study the Duffin–Schaeffer conjecture, which claims that $\unicode[STIX]{x1D706}(\bigcap _{m=1}^{\infty }\bigcup _{n=m}^{\infty }{\mathcal{E}}_{n})=1$ if and only if $\sum _{n=1}^{\infty }\unicode[STIX]{x1D706}({\mathcal{E}}_{n})=\infty$, where $\unicode[STIX]{x1D706}$ denotes the Lebesgue measure on $\mathbb{R}/\mathbb{Z}$,

$$\begin{eqnarray}{\mathcal{E}}_{n}={\mathcal{E}}_{n}(\unicode[STIX]{x1D713})=\mathop{\bigcup }_{\substack{ m=1 \\ (m,n)=1}}^{n}\bigg(\frac{m-\unicode[STIX]{x1D713}(n)}{n},\frac{m+\unicode[STIX]{x1D713}(n)}{n}\bigg),\end{eqnarray}$$
and $\unicode[STIX]{x1D713}$ denotes any non-negative arithmetical function. Instead of studying the superior limit $\bigcap _{m=1}^{\infty }\bigcup _{n=m}^{\infty }{\mathcal{E}}_{n}$ we focus on the union $\bigcup _{n=1}^{\infty }{\mathcal{E}}_{n}$ and conjecture that there exists a universal constant $C>0$ such that
$$\begin{eqnarray}\unicode[STIX]{x1D706}\bigg(\mathop{\bigcup }_{n=1}^{\infty }{\mathcal{E}}_{n}\bigg)\geqslant C\min \bigg\{\mathop{\sum }_{n=1}^{\infty }\unicode[STIX]{x1D706}({\mathcal{E}}_{n}),1\bigg\}.\end{eqnarray}$$
It is shown that this conjecture is equivalent to the Duffin–Schaeffer conjecture. Similar phenomena exist in the fields of $p$-adic numbers and formal Laurent series. Furthermore, two conjectures of Haynes, Pollington and Velani are shown to be equivalent to the Duffin–Schaeffer conjecture, and a weighted version of the second Borel–Cantelli lemma is introduced to study the Duffin–Schaeffer conjecture.

Type
Research Article
Copyright
Copyright © University College London 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aistleitner, C., A note on the Duffin–Schaeffer conjecture with slow divergence. Bull. Lond. Math. Soc. 46 2014, 164168, doi:10.1112/blms/bdt085.CrossRefGoogle Scholar
Beresnevich, V., Bernik, V., Dodson, M. and Velani, S., Classical metric Diophantine approximation revisited. In Analytic Number Theory Essays in Honour of Klaus Roth, (ed. Chen, W. W. L. et al. ), Cambridge University Press (Cambridge, 2009), 3861.Google Scholar
Beresnevich, V., Harman, G., Haynes, A. and Velani, S., The Duffin–Schaeffer conjecture with extra divergence II. Math. Z. 275 2013, 127133.Google Scholar
Beresnevich, V., Haynes, A. and Velani, S., Multiplicative zero–one laws and metric number theory. Acta Arith. 160 2013, 101114.Google Scholar
Beresnevich, V. and Velani, S., A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2) 164 2006, 971992.Google Scholar
Beresnevich, V. and Velani, S., A note on zero–one laws in metrical Diophantine approximation. Acta Arith. 133 2008, 363374.CrossRefGoogle Scholar
Beresnevich, V. and Velani, S., Classical metric Diophantine approximation revisited: the Khintchine–Groshev theorem. Int. Math. Res. Not. IMRN 2010 2010, 6986.Google Scholar
Chung, K. L. and Erdős, P., On the application of the Borel–Cantelli lemma. Trans. Amer. Math. Soc. 72 1952, 179186.CrossRefGoogle Scholar
Duffin, R. J. and Schaeffer, A. C., Khintchine’s problem in metric Diophantine approximation. Duke Math. J. 8 1941, 243255.Google Scholar
Erdős, P. and Rényi, A., On Cantor’s series with convergent ∑1/q n . Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 2 1959, 93109.Google Scholar
Falconer, K., Fractal Geometry Mathematical Foundations and Applications, John Wiley & Sons (Chichester, 1990).Google Scholar
Feng, C., Li, L. and Shen, J., On the Borel–Cantelli lemma and its generalization. C. R. Acad. Sci. Paris I 347 2009, 13131316.CrossRefGoogle Scholar
Fuchs, M., A note on simultaneous Diophantine approximation in positive characteristic. Acta Arith. 147 2011, 161171.Google Scholar
Gallagher, P. X., Approximation by reduced functions. J. Math. Soc. Japan 13 1961, 342345.Google Scholar
Gallagher, P. X., Metric simultaneous Diophantine approximation (II). Mathematika 12 1965, 123127.Google Scholar
Harman, G., Some cases of the Duffin and Schaeffer conjecture. Q. J. Math. Oxford 41 1990, 395404.Google Scholar
Harman, G., Metric Number Theory, Clarendon Press (Oxford, 1998).Google Scholar
Harman, G., Variants of the second Borel–Cantelli lemma and their applications in metric number theory. In Number Theory (Trends in Mathematics) (ed. Bambah, R. P. et al. ), Birkhäuser (Basel, 2000), 121140.Google Scholar
Haynes, A. K., The metric theory of p-adic approximation. Int. Math. Res. Not. IMRN 2010 2010, 1852.Google Scholar
Haynes, A. K., Pollington, A. D. and Velani, S. L., The Duffin–Schaeffer conjecture with extra divergence. Math. Ann. 353 2012, 259273.Google Scholar
Inoue, K., The metric simultaneous diophantine approximations over formal power series. J. Théor. Nombres Bordeaux 15 2003, 151161.Google Scholar
Inoue, K. and Nakada, H., On metric Diophantine approximations in positive characteristic. Acta Arith. 110 2003, 205218.Google Scholar
Li, L., A note on the Duffin–Schaeffer conjecture. Unif. Distrib. Theory 8(2) 2013, 151156.Google Scholar
Li, L., Zero-one laws in simultaneous and multiplicative Diophantine approximation. Mathematika 59 2013, 321332.Google Scholar
Pollington, A. D. and Vaughan, R. C., The k-dimensional Duffin and Schaeffer conjecture. Mathematika 37 1990, 190200.Google Scholar
Rudin, W., Principles of Mathematical Analysis, McGraw-Hill (New York, 1976).Google Scholar
Sprindz̆uk, V., Metric Theory of Diophantine Approximation, John Wiley & Sons (New York, 1979); English translation.Google Scholar
Strauch, O., Some new criterions for sequences which satisfy Duffin–Schaeffer conjecture, I. Acta Math. Univ. Comenian. 42–43 1983, 8795.Google Scholar
Vaaler, J. D., On the metric theory of Diophantine approximation. Pacific J. Math. 76 1978, 527539.CrossRefGoogle Scholar