Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T03:18:29.865Z Has data issue: false hasContentIssue false

Nonclassical pathways of crystallization in colloidal systems

Published online by Cambridge University Press:  04 May 2016

John Russo
Affiliation:
Institute of Industrial Science, The University of Tokyo, Japan; and School of Mathematics, University of Bristol, UK; russoj@iis.u-tokyo.ac.jp
Hajime Tanaka
Affiliation:
Institute of Industrial Science, The University of Tokyo, Japan; tanaka@iis.u-tokyo.ac.jp
Get access

Abstract

Colloidal systems offer ideal conditions to study the nucleation process, both from an experimental viewpoint, due to their relatively large size and long time scales, and from a modeling point of view, due to the tunability of their interactions. In this article, we review recent studies on the process of colloidal crystallization from a microscopic perspective. In particular, we focus on nonclassical pathways to nucleation, where the appearance of solid crystals involves fluctuations of two or more order parameters. Nonclassical behavior is interpreted as a decoupling of positional and orientational symmetry breaking. We then consider how the nucleation pathway determines which polymorph is selected upon nucleation from the melt. The study of nucleation pathways not only sheds new light on the microscopic mechanism of nucleation, but also provides important information regarding its avoidance, suggesting a deep link between crystallization and vitrification.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kelton, K.F., Greer, A.L., Nucleation in Condensed Matter: Applications in Materials and Biology (Elsevier, Amsterdam, 2010), vol. 15.Google Scholar
Gasser, U., Weeks, E.R., Schofield, A., Pusey, P.N., Weitz, D.A., Science 292, 258 (2001).Google Scholar
Löwen, H., Likos, C.N., Assoud, L., Blaak, R., Van Teefelen, S., Philos. Mag. 87, 847 (2007).Google Scholar
Assoud, L., Ebert, F., Keim, P., Messina, R., Maret, G., Löwen, H., J. Phys. Condens. Matter 21, 464114 (2009).CrossRefGoogle Scholar
Leocmach, M., Tanaka, H., Nat. Commun. 3, 974 (2012).Google Scholar
Taffs, J., Williams, S.R., Tanaka, H., Royall, C.P., Soft Matter 9, 297 (2013).Google Scholar
Iland, K., Wölk, J., Strey, R., Kashchiev, D., J. Chem. Phys. 127, 154506 (2007).Google Scholar
Auer, S., Frenkel, D., Nature 409, 1020 (2001).CrossRefGoogle Scholar
Zaccarelli, E., Valeriani, C., Sanz, E., Poon, W.C.K., Cates, M.E., Pusey, P.N., Phys. Rev. Lett. 103, 135704 (2009).CrossRefGoogle Scholar
Filion, L., Hermes, M., Ni, R., Dijkstra, M., J. Chem. Phys. 133, 244115 (2010).Google Scholar
Kawasaki, T., Tanaka, H., Proc. Natl. Acad. Sci. U.S.A. 107, 14036 (2010).CrossRefGoogle Scholar
Kawasaki, T., Tanaka, H., J. Phys. Condens. Matter 22, 232102 (2010).Google Scholar
Filion, L., Ni, R., Frenkel, D., Dijkstra, M., J. Chem. Phys. 134, 134901 (2011).Google Scholar
Schilling, T., Dorosz, S., Schöpe, H.J., Opletal, G., J. Phys. Condens. Matter 23, 194120 (2011).CrossRefGoogle Scholar
Valeriani, C., Sanz, E., Pusey, P.N., Poon, W.C.K., Cates, M.E., Zaccarelli, E., Soft Matter 8, 4960 (2012).Google Scholar
Iacopini, S., Palberg, T., Schöpe, H.J., J. Chem. Phys. 130, 084502 (2009).Google Scholar
Franke, M., Lederer, A., Schöpe, H.J., Soft Matter 7, 11267 (2011).Google Scholar
Royall, C.P., Poon, W.C., Weeks, E.R., Soft Matter 9, 17 (2013).Google Scholar
Russo, J., Maggs, A.C., Bonn, D., Tanaka, H., Soft Matter 9, 7369 (2013).Google Scholar
Radu, M., Schilling, T., Europhys. Lett. 105, 26001 (2014).Google Scholar
Oxtoby, D.W., Acc. Chem. Res. 31, 91 (1998).Google Scholar
Gránásy, L., Iglói, F., J. Chem. Phys. 107, 3634 (1997).Google Scholar
Prestipino, S., Laio, A., Tosatti, E., Phys. Rev. Lett. 108, 225701 (2012).CrossRefGoogle Scholar
Turci, F., Schilling, T., Yamani, M.H., Oettel, M., Eur. Phys. J. Spec. Top. 223, 421 (2014).CrossRefGoogle Scholar
Lutsko, J.F., J. Chem. Phys. 135, 161101 (2011).CrossRefGoogle Scholar
Moroni, D., ten Wolde, P.R., Bolhuis, P.G., Phys. Rev. Lett. 94, 235703 (2005).Google Scholar
Trudu, F., Donadio, D., Parrinello, M., Phys. Rev. Lett. 97, 105701 (2006).Google Scholar
Peters, B., Trout, B.L., J. Chem. Phys. 125, 054108 (2006).Google Scholar
Zykova-Timan, T., Valeriani, C., Sanz, E., Frenkel, D., Tosatti, E., Phys. Rev. Lett. 100, 036103 (2008).Google Scholar
Lechner, W., Dellago, C., Bolhuis, P.G., Phys. Rev. Lett. 106, 085701 (2011).CrossRefGoogle Scholar
Russo, J., Tanaka, H., Sci. Rep. 2, 505 (2012).CrossRefGoogle Scholar
Prestipino, S., Laio, A., Tosatti, E., J. Chem. Phys. 140, 094501 (2014).Google Scholar
Lutsko, J.F., Durán-Olivencia, M.A., J. Phys. Condens. Matter 27, 235101 (2015).Google Scholar
Tanaka, H., Eur. Phys. J. E 35, 1 (2012).Google Scholar
ten Wolde, P.R., Frenkel, D., Science 277, 1975 (1997).Google Scholar
Erdemir, D., Lee, A.Y., Myerson, A.S., Acc. Chem. Res. 42, 621 (2009).CrossRefGoogle Scholar
Vekilov, P.G., Nanoscale 2, 2346 (2010).CrossRefGoogle Scholar
Gebauer, D., Kellermeier, M., Gale, J.D., Bergström, L., Cölfen, H., Chem. Soc. Rev. 43, 2348 (2014).Google Scholar
Zhang, T.H., Liu, X.Y., J. Am. Chem. Soc. 129, 13520 (2007).Google Scholar
Savage, J., Dinsmore, A.D., Phys. Rev. Lett. 102, 198302 (2009).Google Scholar
Lutsko, J.F., Nicolis, G., Phys. Rev. Lett. 96, 46102 (2006).Google Scholar
Soga, K., Melrose, J.R., Ball, R.C., J. Chem. Phys. 110, 2280 (1999).Google Scholar
Wedekind, J., Xu, L., Buldyrev, S.V., Stanley, H.E., Reguera, D., Franzese, G., Sci. Rep. 5, 11260 (2015).Google Scholar
Haxton, T., Hedges, L.O., Whitelam, S., Soft Matter 11, 9307 (2015).Google Scholar
Galkin, O., Vekilov, P.G., Proc. Natl. Acad. Sci. U.S.A. 97, 6277 (2000).Google Scholar
Vekilov, P.G., Cryst. Growth Des. 4, 671 (2004).Google Scholar
Chattopadhyay, S., Erdemir, D., Evans, J.M., Ilavsky, J., Amenitsch, H., Segre, C.U., Myerson, A.S., Cryst. Growth Des. 5, 523 (2005).Google Scholar
Sear, R.P., J. Chem. Phys. 131, 074702 (2009).Google Scholar
Pusey, P.N., van Megen, W., Bartlett, P., Ackerson, B.J., Rarity, J.G., Underwood, S.M., Phys. Rev. Lett. 63, 2753 (1989).CrossRefGoogle Scholar
Zhu, J., Li, M., Rogers, R., Meyer, W., Ottewill, R.H., STS-73 Space Shuttle Crew, Russel, W.B., Chaikin, P.M., Nature 387, 883 (1997).Google Scholar
Martelozzo, V.C., Schofield, A.B., Poon, W.C.K., Pusey, P.N., Phys. Rev. E 66, 021408 (2002).Google Scholar
Schöpe, H.J., Bryant, G., van Megen, W., Phys. Rev. Lett. 96, 175701 (2006).Google Scholar
Schöpe, H.J., Marnette, O., van Megen, W., Bryant, G., Langmuir 23, 11534 (2007).Google Scholar
Schöpe, H.J., Bryant, G., van Megen, W., Phys. Rev. E 74, 060401 (2006).Google Scholar
Schöpe, H.J., Bryant, G., van Megen, W., J. Chem. Phys. 127, 084505 (2007).Google Scholar
Franke, M., Golde, S., Schöpe, H.J., Soft Matter 10, 5380 (2014).Google Scholar
Schilling, T., Schöpe, H.J., Oettel, M., Opletal, G., Snook, I., Phys. Rev. Lett. 105, 25701 (2010).Google Scholar
Berryman, J.T., Anwar, M., Dorosz, S., Schilling, T., Soft Condens. Matter (2015), available at http://arxiv.org/abs/1503.07732.Google Scholar
Leocmach, M., Russo, J., Tanaka, H., J. Chem. Phys. 138, 12A536 (2013).Google Scholar
Steinhardt, P.J., Nelson, D.R., Ronchetti, M., Phys. Rev. B Condens. Matter 28, 784 (1983).Google Scholar
Auer, S., Frenkel, D., Annu. Rev. Phys. Chem. 55, 333 (2004).Google Scholar
Lechner, W., Dellago, C., J. Chem. Phys. 129, 114707 (2008).Google Scholar
Russo, J., Tanaka, H., Soft Matter 8, 4206 (2012).Google Scholar
Tan, P., Xu, N., Xu, L., Nat. Phys. 10, 73 (2014).CrossRefGoogle Scholar
Lu, Y., Lu, X., Qin, Z., Shen, J., Solid State Commun. 217, 13 (2015).Google Scholar
Kawasaki, T., Araki, T., Tanaka, H., Phys. Rev. Lett. 99, 215701 (2007).Google Scholar
Tanaka, H., Kawasaki, T., Shintani, H., Watanabe, K., Nat. Mater. 9, 324 (2010).Google Scholar
Malins, A., Eggers, J., Royall, C.P., Williams, S.R., Tanaka, H., J. Chem. Phys. 138, 12A535 (2013).CrossRefGoogle Scholar
Malins, A., Eggers, J., Tanaka, H., Royall, C.P., Faraday Discuss. 167, 405 (2013).Google Scholar
Royall, C.P., Williams, S.R., Phys. Rep. 560, 1 (2015).Google Scholar
Oettel, M., J. Phys. Condens. Matter 24, 464124 (2012).Google Scholar
Kratzer, K., Arnold, A., Soft Matter 11, 2174 (2015).CrossRefGoogle Scholar
Mohanty, P.S., Bagheri, P., Nöjd, S., Yethiraj, A., Schurtenberger, P., Phys. Rev. X 5, 011030 (2015).Google Scholar
Russo, J., Romano, F., Tanaka, H., Nat. Mater. 13, 733 (2014).Google Scholar
Li, R., Wu, Y., Xiao, J., J. Chem. Phys. 140, 034503 (2014).Google Scholar
Debela, T.T., Wang, X.D., Cao, Q.P., Lu, Y.H., Zhang, D.X., Fecht, H.J., Tanaka, H., Jiang, J.Z., Phys. Rev. B Condens. Matter 89, 104205 (2014).Google Scholar
Han, Y., Lee, J., Choi, S.Q., Choi, M.C., Kim, M.W., Phys. Rev. E 88, 042202 (2013).Google Scholar
Mahynski, N.A., Panagiotopoulos, A.Z., Meng, D., Kumar, S.K., Nat. Commun. 5, 4472 (2014), doi:10.1038/ncomms5472.Google Scholar
Mondal, C., Karmakar, S., Sengupta, S., J. Phys. Chem. B 119, 10902 (2015).Google Scholar
Karayiannis, N.C., Foteinopoulou, K., Laso, M., Int. J. Mol. Sci. 14, 332 (2012).Google Scholar
Hoy, R.S., Karayiannis, N.C., Phys. Rev. E 88, 012601 (2013).Google Scholar
Lander, B., Seifert, U., Speck, T., J. Chem. Phys. 138, 224907 (2013).Google Scholar
Desgranges, C., Delhommelle, J., J. Am. Chem. Soc. 128, 15104 (2006).Google Scholar
Mithen, J.P., Callison, A.J., Sear, R.P., J. Chem. Phys. 142, 224505 (2015).Google Scholar
Bolhuis, P.G., Frenkel, D., Mau, S.C., Huse, D.A., Nature 388, 235 (1997).Google Scholar
Pronk, S., Frenkel, D., J. Chem. Phys. 110, 4589 (1999).Google Scholar
Palberg, T., Curr. Opin. Colloid Interface Sci. 2, 607 (1997).Google Scholar
O’Malley, B., Snook, I., Phys. Rev. Lett. 90, 85702 (2003).Google Scholar
Likos, C.N., Soft Matter 2, 478 (2006).Google Scholar
Shintani, H., Tanaka, H., Nat. Phys. 2, 200 (2006).Google Scholar
Russo, J., Tanaka, H., Proc. Natl. Acad. Sci. U.S.A. 112, 6920 (2015).Google Scholar
Kawasaki, T., Tanaka, H., J. Phys. Condens. Matter 23, 194121 (2011).Google Scholar
Zheng, Z., Ni, R., Wang, F., Dijkstra, M., Wang, Y., Han, Y., Nat. Commun. 5, 3829 (2014).Google Scholar
Tanaka, H., J. Phys. Condens. Matter 15, L491 (2003).Google Scholar
Karayiannis, N.C., Malshe, R., de Pablo, J.J., Laso, M., Phys. Rev. E 83, 061505 (2011).Google Scholar
Romano, F., Russo, J., Tanaka, H., Phys. Rev. Lett. 113, 138303 (2014).Google Scholar
Kawasaki, T., Tanaka, H., Phys. Rev. E 89, 062315 (2014).Google Scholar
Sanz, E., Valeriani, C., Zaccarelli, E., Poon, W.C., Cates, M.E., Pusey, P.N., Proc. Natl. Acad. Sci. U.S.A. 111, 75 (2014).Google Scholar
Watanabe, K., Kawasaki, T., Tanaka, H., Nat. Mater. 10, 512 (2011).Google Scholar
Sandomirski, K., Allahyarov, E., Löwen, H., Egelhaaf, S.U., Soft Matter 7, 8050 (2011).Google Scholar