Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T09:57:52.427Z Has data issue: false hasContentIssue false

Microstructure and dielectric properties with CuO additions to liquid phase sintered BaTiO3 thin films

Published online by Cambridge University Press:  17 March 2016

David T. Harris*
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
Matthew J. Burch
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
Edward J. Mily
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
Elizabeth C. Dickey
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
Jon-Paul Maria
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
*
a) Address all correspondence to this author. e-mail: david.harris@wisc.edu
Get access

Abstract

The refractory nature of BaTiO3 leads to limited densification and grain growth for films processed at low temperatures and a modest nonlinear dielectric response due to a marked sensitivity to physical scale and material quality. Adding liquid-forming sintering aids, common in bulk ceramics, to thin films enhances mass transport, leading to enhanced grain growth at lower temperatures. This work explores the effectiveness of a sputtered CuO buffer layer with BaO–B2O3 (BBO) fluxes to engineer the microstructure of BaTiO3 films. Grain size and homogeneity increase in the presence of even a ∼1 nm CuO layer. In general, grain size increases from 75 to 370 nm with an addition of 2.2% BBO and 8 nm CuO. Room temperature capacitance in fluxed films increases by a factor of 5 over pure films, and ferroelectric phase transitions are clearly observable in dielectric measurements. CuO–BBO proves effective on (0001) Al2O3 and (100) MgO substrates, although all microstructures are notably finer for the latter.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aygün, S.M., Ihlefeld, J.F., Borland, W.J., and Maria, J-P.: Permittivity scaling in Ba1−x Sr x TiO3 thin films and ceramics. J. Appl. Phys. 109, 034108 (2011).CrossRefGoogle Scholar
Frey, M.H., Xu, Z., Han, P., and Payne, D.A.: The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics. Ferroelectrics 206, 337353 (1998).CrossRefGoogle Scholar
Shaw, T.M., Suo, Z., Huang, M., Liniger, E., Laibowitz, R.B., and Baniecki, J.D.: The effect of stress on the dielectric properties of barium strontium titanate thin films. Appl. Phys. Lett. 75, 2129 (1999).CrossRefGoogle Scholar
Streiffer, S.K., Basceri, C., Parker, C.B., Lash, S.E., and Kingon, A.I.: Ferroelectricity in thin films: The dielectric response of fiber-textured (Ba x Sr1−x )Ti1+y O3+z thin films grown by chemical vapor deposition. J. Appl. Phys. 86, 4565 (1999).CrossRefGoogle Scholar
Arlt, G., Hennings, D., and de With, G.: Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 1619 (1985).CrossRefGoogle Scholar
Zhao, Z., Buscaglia, V., Viviani, M., Buscaglia, M., Mitoseriu, L., Testino, A., Nygren, M., Johnsson, M., and Nanni, P.: Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B: Condens. Matter Mater. Phys. 70, 024107 (2004).CrossRefGoogle Scholar
Kishi, H., Mizuno, Y., and Chazono, H.: Base-metal electrode-multilayer ceramic capacitors: Past, present and future perspectives. Jpn. J. Appl. Phys. 42, 115 (2003).CrossRefGoogle Scholar
Prakash, D., Sharma, B.P., Rama Mohan, T.R., and Gopalan, P.: Flux additions in barium titanate: Overview and prospects. J. Solid State Chem. 155, 8695 (2000).CrossRefGoogle Scholar
Takahashi, R., Yonezawa, Y., Ohtani, M., Kawasaki, M., Nakajima, K., Chikyow, T., Koinuma, H., and Matsumoto, Y.: Perfect Bi4Ti3O12 single-crystal films via flux-mediated epitaxy. Adv. Funct. Mater. 16, 485491 (2006).CrossRefGoogle Scholar
Ihlefeld, J.F., Borland, W.J., and Maria, J-P.: Enhanced dielectric and crystalline properties in ferroelectric barium titanate thin films. Adv. Funct. Mater. 17, 11991203 (2007).CrossRefGoogle Scholar
Harris, D.T., Burch, M.J., Ihlefeld, J.F., Lam, P.G., Li, J., Dickey, E.C., and Maria, J-P.: Realizing strain enhanced dielectric properties in BaTiO3 films by liquid phase assisted growth. Appl. Phys. Lett. 103, 012904 (2013).CrossRefGoogle Scholar
Harris, D.T., Lam, P.G., Burch, M.J., Li, J., Rogers, B.J., Dickey, E.C., and Maria, J-P.: Ultra-high tunability in polycrystalline Ba1−x Sr x TiO3 thin films. Appl. Phys. Lett. 105, 072904 (2014).CrossRefGoogle Scholar
Burn, I.: Flux-sintered BaTiO3 dielectrics. J. Mater. Sci. 17, 13981408 (1982).CrossRefGoogle Scholar
Hennings, D. and Schreinemacher, H.: Method of producing a dielectric with perowskite structure and containing a copper oxide, United States Patent Office. U.S. Patent No. US4222885A, 1980.
Hennings, D. and Schreinemacher, H.: Method of producing a dielectric with perowskite structure and containing a copper oxide, United States Patent Office. U.S. Patent No. US4244830A, 1981.
Li, T., Yang, K., Xue, R., Xue, Y., and Chen, Z.: The effect of CuO doping on the microstructures and dielectric properties of BaTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 22, 838842 (2010).Google Scholar
Yang, C-F.: The influence of CuO–BaO mixture addition on the grain growth and dielectric characteristics of BaTiO3 ceramics. Ceram. Interfaces 24, 341346 (1998).CrossRefGoogle Scholar
ASTM International: ASTM E112-13, Standard Test Methods for Determining Average Grain Size (ASTM International, West Conshohocken, PA, 2013).
Zhang, W., Osamura, K., and Ochiai, S.: Phase diagram of the BaO–CuO binary system. J. Am. Ceram. Soc. 73, 19581964 (1990).CrossRefGoogle Scholar
Levin, E.M. and McMurdie, H.F.: The system BaO–B2O3 . J. Am. Ceram. Soc. 32, 99105 (1949).CrossRefGoogle Scholar
Burch, M.J., Li, J., Harris, D.T., Maria, J-P., and Dickey, E.C.: Mechanisms for microstructure enhancement in flux-assisted growth of barium titanate on sapphire. J. Mater. Res. 29, 843848 (2014).CrossRefGoogle Scholar
Harris, D.T., Burch, M.J., Li, J., Dickey, E.C., and Maria, J-P.: Low-temperature control of twins and abnormal grain growth in BaTiO3 . J. Am. Ceram. Soc. 98, 23812387 (2015).CrossRefGoogle Scholar
Derling, S., Müller, T., and Abicht, H.: Copper oxide as a sintering agent for barium titanate based ceramics. J. Mater. Sci. 36, 14251431 (2001).CrossRefGoogle Scholar
Lim, J-B., Nahm, S., Kim, H-T., Kim, J-H., Paik, J-H., and Lee, H-J.: Effect of B2O3 and CuO on the sintering temperature and microwave dielectric properties of the BaTi4O9 ceramics. J. Electroceram. 17, 393397 (2006).CrossRefGoogle Scholar
Kim, M-H., Jeong, Y-H., Nahm, S., Kim, H-T., and Lee, H-J.: Effect of B2O3 and CuO additives on the sintering temperature and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics. J. Eur. Ceram. Soc. 26, 21392142 (2006).CrossRefGoogle Scholar
Gadalla, A.M.M. and White, J.: Equilibrium relationships in the system CuO–Cu2O–Al2O3 . Trans. Br. Ceram. Soc. 63, 57 (1964).Google Scholar
McCauley, D., Newnham, R.E., and Randall, C.A.: Intrinsic size effects in a barium titanate glass-ceramic. J. Am. Ceram. Soc. 81, 979987 (1998).CrossRefGoogle Scholar
Ihlefeld, J.F., Daniels, P.R., Aygün, S.M., Borland, W.J., and Maria, J-P.: Property engineering in BaTiO3 films by stoichiometry control. J. Mater. Res. 25, 10641071 (2010).CrossRefGoogle Scholar
Lee, J.K., Hong, K.S., and Jang, J.W.: Roles of Ba/Ti ratios in the dielectric properties of BaTiO3 ceramics. J. Am. Ceram. Soc. 84, 20012006 (2001).CrossRefGoogle Scholar
Lupascu, D.C., Genenko, Y., and Balke, N.: Aging in ferroelectrics. J. Am. Ceram. Soc. 89, 224229 (2006).CrossRefGoogle Scholar
Tan, Y.Q., Zhang, J.L., and Wang, C.L.: Aging behaviours of CuO modified BaTiO3 ceramics. Adv. Appl. Ceram. 113, 223227 (2014).CrossRefGoogle Scholar
Langhammer, H.T., Müller, T., Böttcher, R., and Abicht, H-P.: Crystal structure and related properties of copper-doped barium titanate ceramics. Solid State Sci. 5, 965971 (2003).CrossRefGoogle Scholar
Robels, U. and Arlt, G.: Domain wall clamping in ferroelectrics by orientation of defects. J. Appl. Phys. 73, 3454 (1993).CrossRefGoogle Scholar
Young, A., Hilmas, G., Zhang, S.C., and Schwartz, R.W.: Effect of liquid-phase sintering on the breakdown strength of barium titanate. J. Am. Ceram. Soc. 90, 15041510 (2007).CrossRefGoogle Scholar
Wu, Z.H., Liu, H.X., Cao, M.H., Shen, Z.Y., Yao, Z.H., Hao, H., and Luo, D.B.: Effect of BaO–Al2O3–B2O3–SiO2 glass additive on densification and dielectric properties of Ba0.3Sr0.7TiO3 ceramics. J. Ceram. Soc. Jpn. 116, 345349 (2008).CrossRefGoogle Scholar
Krasevec, V., Drofenik, M., and Kolar, D.: Genesis of the (111) twin in barium titanate. J. Am. Ceram. Soc. 73, 856860 (1990).CrossRefGoogle Scholar
Krasevec, V., Drofenik, M., and Kolar, D.: Topotaxy between BaTiO3 and Ba6Ti17O40 . J. Am. Ceram. Soc. 70, C-193C-195 (1987).CrossRefGoogle Scholar
Lee, B., Chung, S., and Kang, S-J.L.: Grain boundary faceting and abnormal grain growth in BaTiO3 . Acta Mater. 48, 15751580 (2000).CrossRefGoogle Scholar
Lee, B-K. and Kang, S-J.L.L.: Second-phase assisted formation of {111} twins in barium titanate. Acta Mater. 49, 13731381 (2001).CrossRefGoogle Scholar
Lee, B., Chung, S., and Kang, S.L.: Necessary conditions for the formation of {111} twins in barium titanate. J. Am. Ceram. Soc. 83, 28582860 (2004).CrossRefGoogle Scholar
DeVRIES, R.C.: Observations on growth of BaTiO3 crystals from KF solutions. J. Am. Ceram. Soc. 42, 547558 (1959).CrossRefGoogle Scholar
Eibl, O., Pongratz, P., and Skalicky, P.: Crystallography of (111) twins in BaTiO3 . Philos. Mag. Part B 57, 521534 (1988).CrossRefGoogle Scholar
Eibl, O., Pongratz, P., Skalicky, P., and Schmelz, H.: Formation of (111) twins in BaTiO3 ceramics. J. Am. Ceram. Soc. 70, C-195C-197 (1987).CrossRefGoogle Scholar