Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-17T12:36:08.961Z Has data issue: false hasContentIssue false

Synthesis and their photocatalytic properties of Ni-doped ZnO hollow microspheres

Published online by Cambridge University Press:  19 April 2016

Yuanyou Wang*
Affiliation:
Jiangsu Key Laboratory of Environmental Material and Environmental Engineering, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China; Department of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou, 225127, China; and School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Tianqing Liu
Affiliation:
Jiangsu Key Laboratory of Environmental Material and Environmental Engineering, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
Qingli Huang
Affiliation:
Testing Center, Yangzhou University, Yangzhou, 225009, China
Changle Wu
Affiliation:
Testing Center, Yangzhou University, Yangzhou, 225009, China
Dan Shan
Affiliation:
School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
*
a) Address all correspondence to this author. e-mail: wangyy@ypi.edu.cn
Get access

Abstract

Ni-doped ZnO hollow microspheres were fabricated by calcining the mixture of zinc and nickel citrate precursors at 500 °C for 2 h. The structure, composition, Barrett–Emmett–Teller specific surface area, and optical properties of Ni-doped ZnO samples were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, wave length dispersive x-ray fluorescence spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, N2 adsorption–desorption isotherms, and ultraviolet (UV)-visible diffuse reflectance spectroscopy. The photocatalytic results demonstrated that the as-synthesized Ni-doped ZnO microcrystals possessed much higher photocatalytic activity than pure ZnO in the decomposition of methylene blue under UV-light irradiation. The present work suggests that Ni-doped ZnO hollow microspheres can be applied as an efficient photocatalyst for water polluted by some chemically stable azo dyes.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, X., Yu, J.G., Low, J.X., Fang, Y.P., Xiao, J., and Chen, X.B.: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 24852534 (2015).CrossRefGoogle Scholar
Mukhopadhyay, S., Das, P.P., Maity, S., Ghosh, P., and Devi, P.S.: Solution grown ZnO rods: Synthesis, characterization and defect mediated photocatalytic activity. Appl. Catal. B: Environ. 165, 128138 (2015).Google Scholar
Huang, M.L., Weng, S.X., Wang, B., Hu, J., Fu, X.Z., and Liu, P.: Various facet tunable ZnO crystals by a scalable solvothermal synthesis and their facet-dependent photocatalytic activities. J. Phys. Chem. C 118, 2543425440 (2014).Google Scholar
Girish Kumar, S. and Koteswara Rao, K.S.R.: Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5, 33063351 (2015).Google Scholar
Chen, X.B., Liu, L., and Huang, F.Q.: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 18611885 (2015).Google Scholar
Liu, L. and Chen, X.: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev., 114, 98909918 (2014).Google Scholar
Wen, J.Q., Li, X., Liu, W., Fang, Y.P., Xie, J., and Xu, Y.H.: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chinese. J. Catal. 36, 20492070 (2015).Google Scholar
Liu, S., Li, C., Yu, J., and Xiang, Q.: Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. CrystEngComm 13, 25332541 (2011).Google Scholar
Giannakopoulou, T., Todorova, N., Giannouri, M., Yu, J., and Trapalis, C.: Optical and photocatalytic properties of composite TiO2/ZnO thin films. Catal. Today 230, 174180 (2014).Google Scholar
Li, X., Xia, T., Xu, C.H., Murowchick, J., and Chen, X.B.: Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts. Catal. Today 225, 6473 (2014).Google Scholar
Zhai, T., Fang, X., Bando, Y., Dierre, B., Liu, B., Zeng, H., Xu, X., Huang, Y., Yuan, X., Sekiguchi, T., and Golberg, D.: Characterization, cathodoluminescence, and field emission properties of morphology-tunable CdS micro/nanostructures. Adv. Funct. Mater. 19, 24232430 (2009).CrossRefGoogle Scholar
Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H.: One dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353389 (2003).Google Scholar
Assali, S., Zardo, I., Plissard, S., Kriegner, D., Verheijen, M.A., Bauer, G., Meijerink, A., Belabbes, A., Bechstedt, F., Haverkort, J.E.M., and Bakkers, E.P.A.M.: Direct band gap wurtzite gallium phosphide nanowires. Nano Lett. 13, 15591563 (2013).Google Scholar
Yong, C.K., Noori, K., Gao, Q., Joyce, H.J., Tan, H.H., Jagadish, C., Giustino, F., Johnston, M.B., and Herz, L.M.: Strong carrier lifetime enhancement in GaAs nanowires coated with semiconducting polymer. Nano Lett. 12, 62936301 (2012).CrossRefGoogle ScholarPubMed
Han, N., Yang, Z., Wang, F., Yip, S., Dong, G., Liang, X., Hung, T., Chen, Y., and Ho, J.C.: Modulating the morphology and electrical properties of GaAs nanowires via catalyst stabilization by oxygen. ACS Appl. Mater. Interfaces 7, 55915597 (2015).CrossRefGoogle ScholarPubMed
Joyce, H.J., Wong-Leung, J., Yong, C.-K., Docherty, C.J., Paiman, S., Gao, Q., Tan, H.H., Jagadish, C., Lloyd-Hughes, J., Herz, L.M., and Johnston, M.B.: Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy. Nano Lett. 12, 53255330 (2012).Google Scholar
Hu, Z.D., Duan, X.F., Gao, M., Chen, Q., and Peng, L.M.: ZnSe nanobelts and nanowires synthesized by a closed space vapor transport technique. J. Phys. Chem. C 111, 29872991 (2007).CrossRefGoogle Scholar
Georgekutty, R., Seery, M.K., and Pillai, S.C.: A highly efficient Ag–ZnO photocatalyst: Synthesis, properties, and mechanism. J. Phys. Chem. C 112, 1356313570 (2008).Google Scholar
Zhang, X., Liu, Y., and Kang, Z.H.: 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 6, 44804489 (2014).Google Scholar
Patil, A.B., Patil, K.R., and Pardeshi, S.K.: Ecofriendly synthesis and solar photocatalytic activity of S-doped ZnO. J. Hazard Mater. 183, 315323 (2010).Google Scholar
Chen, L.C., Tu, Y.J., Wang, Y.S., Kan, R.S., and Huang, C.M.: Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. J. Photochem. Photobiol., A 199, 170178 (2008).CrossRefGoogle Scholar
Shifu, C., Wei, Z., Sujuan, Z., and Wei, L.: Preparation, characterization and photocatalytic activity of N-containing ZnO powder. Chem. Eng. J. 148, 263269 (2009).Google Scholar
Yousefi, M., Amiri, M., Azimirad, R., and Moshfegh, A.Z.: Enhanced photoelectrochemical activity of Ce doped ZnO nanocomposite thin films under visible light. J. Electroanal. Chem. 661, 106112 (2011).Google Scholar
Anandan, S., Vinu, A., Sheeja Lovely, K.L.P., Gokulakrishnan, N., Srinivasu, P., Mori, T., et al.: Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. J. Mol. Catal. A: Chem. 266, 149157 (2007).Google Scholar
Zhao, J., Wang, L., Yan, X., Yang, Y., Lei, Y., Zhou, J., Huang, Y., Gu, Y., and Zhang, Y.: Structure and photocatalytic activity of Ni-doped ZnO nanorods. Mater. Res. Bull. 46, 12071210 (2011).Google Scholar
Xiao, Q. and Ouyang, L.: Photocatalytic photodegradation of xanthate over Zn1−x Mn x O under visible light irradiation. J. Alloys Compd. 479, 47 (2009).CrossRefGoogle Scholar
Xu, C., Cao, L., Su, G., Liu, W., Qu, X., and Yu, Y.: Preparation, characterization and photocatalytic activity of Co-doped ZnO powders. J. Alloys Compd. 497, 373376 (2010).CrossRefGoogle Scholar
Xiao, Q. and Yao, C.: Preparation and visible light photocatalytic activity of Zn1−x Fe x O nanocrystalline. Mater. Chem. Phys. 130, 59 (2011).Google Scholar
Mohan, R., Krishnamoorthy, K., and Kim, S.-J.: Enhanced photocatalytic activity of Cu doped ZnO nanorods. Solid State Commun. 152, 375380 (2012).Google Scholar
Cai, X., Cai, Y., Liu, Y., Deng, S., Wang, Y., and Djerdj, I.: Photocatalytic degradation properties of Ni(OH)2 nanosheets/ZnO nanorods composites for azo dyes under visible-light irradiation. Ceram. Int. 40, 5765 (2014).CrossRefGoogle Scholar
Siddheswaran, R., Savková, J., Medlín, R., Očenášek, J., Životský, O., Novak, P., and Šutta, P.: Highly c-axis oriented ZnO: Ni thin film nanostructure by RF magnetron sputtering: Structural, morphological and magnetic studies. Appl. Surf. Sci. 316, 524531 (2014).CrossRefGoogle Scholar
Raja, K., Ramesh, P.S., and Geetha, D.: Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method. Spectrochim. Acta, Part A 120, 1924 (2014).Google Scholar
Jan, T., Iqbal, J., Ismail, M., Mansoor, Q., Mahmood, A., and Ahmad, A.: Eradication of multi-drug resistant bacteria by Ni doped ZnO nanorods: Structural, Raman and optical characteristics. Appl. Surf. Sci. 308, 7581 (2014).Google Scholar
Goswami, N. and Sahai, A.: Structural transformation in nickel doped zinc oxide nanostructures. Mater. Res. Bull. 48, 346351 (2013).Google Scholar
Chu, X.F., Zhu, X.H., Dong, Y.P., Chen, T.Y., Ye, M.F., and Sun, W.Q.: An amperometric glucose biosensor based on the immobilization of glucose oxidase on the platinum electrode modified with NiO doped ZnO nanorods. J. Electroanal. Chem. 676, 2026 (2012).Google Scholar
Zhao, J., Wang, L., Yan, X.Q., Yang, Y., Lei, Y., Zhou, J., Huang, Y.H., Gua, Y.S., and Zhang, Y.: Structure and photocatalytic activity of Ni-doped ZnO nanorods. Mater. Res. Bull. 46, 12071210 (2011).Google Scholar
Yilmaz, S., McGlynn, E., Bacaksiz, E., Cullen, J., and Chellappan, R.K.: Structural, optical and magnetic properties of Ni-doped ZnO micro-rods grown by the spray pyrolysis method. Chem. Phys. Lett. 525, 7276 (2012).Google Scholar
Cho, S., Jang, J.-W., Jung, A., Lee, S.-H., Lee, J., Sung Lee, J., and Lee, K.-H.: Formation of amorphous zinc citrate spheres and their conversion to crystalline ZnO nanostructures. Langmuir 27, 371378 (2011).Google Scholar
Ge, L., Jing, X.Y., Wang, J., Jamil, S., Liu, Q., Liu, F., and Zhang, M.: Trisodium citrate assisted synthesis of ZnO hollow spheres via a facile precipitation route and their application as gas sensor. J. Mater. Chem. 21, 1075010754 (2011).Google Scholar
Schwartz, D.A., Kittilatved, K.R., and Gamelin, D.R.: Above-room-temperature ferromagnetic-doped thin films prepared from colloidal diluted magnetic semiconductor quantum dots. Appl. Phys. Lett. 85, 13951397 (2004).Google Scholar
Yin, Z.G., Chen, N., Yang, F., Song, S.L., Chai, C.L., Zhong, J., Qian, H.J., and Ibrahim, K.: Structural, magnetic properties and photoemission study of Ni-doped ZnO. Solid State Commun. 135, 430433 (2005).CrossRefGoogle Scholar
Boronin, A.I., Koscheev, S.V., and Zhidomirov, G.M.: XPS and UPS study of oxygen states on silver. J. Electron Spectrosc. Relat. Phenom. 96, 4351 (1998).Google Scholar
Major, S., Kumar, S., Bhatnagar, M., and Chopra, K.L.: Effect of hydrogen plasma treatment on transparent conducting oxides. Appl. Phys. Lett. 49, 394401 (1986).Google Scholar
Islam, M.N., Ghosh, T.B., Chopra, K.L., and Acharya, H.N.: XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films 280, 2025 (1996).CrossRefGoogle Scholar
Chen, M., Wang, X., Yu, Y.H., Pei, Z.L., Bai, X.D., Sun, C., Huang, R.F., and Wen, L.S.: X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 158, 134140 (2000).Google Scholar
Fan, J.C.C. and Goodenough, J.B.: X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films. J. Appl. Phys. 48, 35243531 (1977).Google Scholar
Zheng, Y., Chen, C., Zhan, Y., Lin, X., Zheng, Q., Wei, K., Zhu, J., and Zhu, Y.: Luminescence and photocatalytic activity of ZnO nanocrystals: Correlation between structure and property. Inorg. Chem. 46, 66756681 (2007).Google Scholar
Chandrasekhar, M., Nagabhushana, H., Vidya, Y.S., Anantharaju, K.S., Sharma, S.C., Premkumar, H.B., Prashantha, S.C., Daruka, P.B., Shivakumara, C., Saraf, R., and Nagaswarupa, H.P.: Synthesis of Eu3+-activated ZnO superstructures: Photoluminescence, Judd–Ofelt analysis and sunlight photocatalytic properties. J. Mol. Catal. A: Chem. 409, 2641 (2015).Google Scholar
Sharma, P.K., Pandey, A.C., Zolnierkiewicz, G., Guskos, N., and Rudowicz, C., Relationship between oxygen defects and the photoluminescence property of ZnO nanoparticles: A spectroscopic view. J. Appl. Phys. 106, 094314094315 (2009).Google Scholar
Bae, S.Y., Na, C.W., Kang, J.H., and Park, J.: Comparative structure and optical properties of Ga-, in-, and Sn-doped ZnO nanowires synthesized via thermal evaporation. J. Phys. Chem. B 109, 25262531 (2005).Google Scholar