Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T02:57:36.946Z Has data issue: false hasContentIssue false

Determination of the basic physical properties of semiconductor chalcopyrite type MgSnT2 (T = P, As, Sb) from first-principles calculations

Published online by Cambridge University Press:  15 April 2016

Belgin Kocak*
Affiliation:
Department of Physics, Gazi University, Teknikokullar, 06500, Ankara, Turkey
Yasemin Oztekin Ciftci*
Affiliation:
Department of Physics, Gazi University, Teknikokullar, 06500, Ankara, Turkey
*
a)Address all correspondence to this author. e-mail: yasemin@gazi.edu.tr
Get access

Abstract

Using first-principles calculations, the fundamental understanding of the structure, electronic, elastic, lattice dynamic, and optic properties of three Mg-based ternary chalcopyrite semiconductors have been analyzed in detail within density functional theory scheme. To ensure an accurate determination of our calculated results, we considered five popular generalized gradient approximation formulations such as Perdew and Wang, Perdew–Burke and Ernzerhof (PBE), revised PBE, modified PBE, and Armiento–Mattson 2005 as well as local-density approximation (LDA) for the exchange-correlation potentials. It is found that all the calculated values of band gap for these compounds are underestimated compared to existing studies, while LDA-based functional gives better results than others. The electronic band structure demonstrated that these compounds have direct band gap at the Γ point in the Brillouin zone. It is observed that these compounds are mechanically stable in the chalcopyrite structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shay, J.L. and Wernick, J.H.: Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Application (Pergamon Press, New York, 1975).Google Scholar
Jaffe, J.E. and Zunger, A.: Anion displacements and the band-gap anomaly in ternary ABC2 chalcopyrite semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 27, 5176 (1983).Google Scholar
Zunger, A. and Jaffe, J.E.: Structural origin of optical bowing in semiconductor alloys. Phys. Rev. Lett. 51, 662 (1983).CrossRefGoogle Scholar
Jaffe, J.E. and Zunger, A.: Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 29, 1882 (1984).CrossRefGoogle Scholar
Jaffe, J.E. and Zunger, A.: Electronic structure of the ternary pnictide semiconductors ZnSiP2, ZnGeP2, ZnSnP2, ZnSiAs2, and MgSiP2. Phys. Rev. B: Condens. Matter Mater. Phys. 30, 741 (1984).Google Scholar
Continenza, A., Massidda, S., Freemann, A.J., de Pascale, T.M., Meloni, F., and Serra, M.: Structural and electronic properties of narrow-gap ABC2 chalcopyrite semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 46, 10 07010 077 (1992).CrossRefGoogle ScholarPubMed
Paudel, T.R. and Lambrecht, W.R.L.: First-principles study of phonons and related ground-state properties and spectra in Zn–IV–N2 compounds. Phys. Rev. B: Condens. Matter Mater. Phys. 78, 115204 (2008).CrossRefGoogle Scholar
Sharma, S., Verma, A.S., and Jindal, V.K.: Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX2: X = S, Se, Te). Mater. Res. Bull. 53, 218233 (2014).CrossRefGoogle Scholar
Sainia, H.S., Singh, M., Reshak, A.H., and Kashyap, M.K.: Effect of cation substitution on electronic band structure of ZnGeAs2 pnictides: A mBJLDA approach. J. Alloys Compd. 518, 7479 (2012).Google Scholar
Sahin, S., Ciftci, Y.O., Colakoglu, K., and Korozlu, N.: First principles studies of elastic, electronic and optical properties of chalcopyrite semiconductor ZnSnP2. J. Alloys Compd. 529, 17 (2012).Google Scholar
Shaposhnikov, V.L., Krivosheeva, A.V., D'Avitaya, F.A., Lazzari, J-L., and Borisenko, V.E.: Structural, electronic and optical properties of II–IV–N2 compounds (II = Be, Zn; IV = Si, Ge). Phys. Status Solidi B 245, 142148 (2008).CrossRefGoogle Scholar
Chiker, F., Kebbab, Z., Miloua, R., and Benramdane, N.: Birefringence of optically uni-axial ternary semiconductors. Solid State Commun. 151, 15681573 (2011).Google Scholar
Suh, C. and Rajan, K.: Combinatorial design of semiconductor chemistry for bandgap engineering: ‘‘virtual’’ combinatorial experimentation. Appl. Surf. Sci. 223, 148 (2004).Google Scholar
Erwin, S.C. and Zutic, I.: Tailoring ferromagnetic chalcopyrites. Nat. Mater. 3, 410414 (2004).Google Scholar
Shaposhnikov, V.L., Krivosheeva, A.V., and Borisenko, V.E.: Ab initio modeling of the structural, electronic, and optical properties of AIIBIVCV2 semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 85, 205201 (2012).Google Scholar
Ullah, S., Murtaza, G., Khenata, R., and Reshak, A.H.: Electronic, optical and bonding properties of MgYZ2 (Y = Si, Ge; Z = N, P) chalcopyrites from first principles. Mater. Sci. Semicond. Process. 26, 7986 (2014).Google Scholar
Shi, L., Hu, J., Qin, Y., Duan, Y., Wu, L., Yang, X., and Tang, G.: First-principles study of structural, elastic and lattice dynamical properties of chalcopyrite BeSiV2 and MgSiV2 (V = P, As, Sb). J. Alloys Compd. 611, 210218 (2014).Google Scholar
Zunger, A., Wagner, S., Petroff, P.M.: New materials and structures for photovoltaics. J. Electron. Mater. 22, 3 (1993).Google Scholar
Krivosheeva, A.V., Shaposhnikov, V.L., D'Avitaya, F.A., and Lazzari, J.-L.: Properties of novel chalcopyrite semiconductors for optoelectronics. In Phys., Chem. Appl. Nanostruct.: Rev. Short Notes, Proc. Int. Conf. NANOMEET.-2011, 620 (2011).Google Scholar
Kresse, G. and Joubert, J.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1758 (1999).Google Scholar
Kresse, G. and Hafner, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 47, 558 (1994).CrossRefGoogle Scholar
Ceperley, D.M. and Alder, B.J.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980).Google Scholar
Perdew, J.P. and Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B: Condens. Matter Mater. Phys. 45, 13244 (1992).CrossRefGoogle ScholarPubMed
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
Zhang, Y. and Yang, W.: Comment on generalized gradient approximation made simple. Phys. Rev. Lett. 80, 890 (1998).CrossRefGoogle Scholar
Armiento, R. and Mattsson, A.E.: Functional designed to include surface effects in self-consistent density functional theory. Phys. Rev. B: Condens. Matter Mater. Phys. 72, 085108 (2005).Google Scholar
Mattsson, A.E. and Armiento, R.: Implementing and testing the AM05 spin density functional. Phys. Rev. B: Condens. Matter Mater. Phys. 79, 155101 (2009).Google Scholar
Mattsson, A.E., Armiento, R., Paier, J., Kresse, G., Wills, J.M., and Mattsson, T.R.: The AM05 density functional applied to solids. J. Chem. Phys. 128, 084714 (2008).Google Scholar
Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., and Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).Google Scholar
Page, L. and Saxe, P.: Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 104104 (2002).Google Scholar
Mehl, M.J., Osburn, J.E., Papaconstantopoulos, D.A., and Klein, B.M.: Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 41, 1031110323 (1990).CrossRefGoogle ScholarPubMed
Abdellaouia, A., Ghaffour, M., Bouslama, M., Benalia, S., Ouerdane, A., Abidri, B., and Monteil, Y.: Structural phase transition, elastic properties and electronic properties of chalcopyrite CuAlX2 (X = S, Se, Te). J. Alloys Compd. 487, 206213 (2009).Google Scholar
Fu, H., Zhao, Z., Liu, W., Peng, F., Gao, T., and Cheng, X.: Ab initio calculations of elastic constants and thermodynamic properties of γTiAl under high pressures. Intermetallics 18, 761766 (2010).Google Scholar
Fu, H., Li, D., Peng, F., Gao, T., and Cheng, X.: Structural and elastic properties of γTiAl under high pressure from electronic structure calculations. J. Alloys Compd. 473, 255261 (2009).Google Scholar
Mouhat, F. and Coudert, F-X.: Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B: Condens. Matter Mater. Phys. 90, 224104 (2014).CrossRefGoogle Scholar
Reuss, A. and Angew, Z.: A calculation of the bulk modulus of polycrystalline materials. J. Math. Mech. 9, 49 (1929).Google Scholar
Hill, R.: The elastic behavior of a crystalline aggregate. Proc. Phys. Soc., London, Sect. A 65, 349 (1952).Google Scholar
Shein, I.R. and Ivanovskii, A.L.: Elastic properties of quaternary oxypnictides LaOFeAs and LaOFeP as basic phases for new 26–52 K superconducting materials from first principles. Scr. Mater. 59, 10991102 (2008).Google Scholar
Peng, F., Chen, D., Fu, H., and Yang, X.: Elastic and thermal properties of osmium under pressure. Philos. Mag. Lett. 91, 4353 (2011).Google Scholar
Peng, F., Chen, D., and Yang, X.: Elasticity and thermodynamic properties of α-Ta4AlC3 under pressure. J. Alloys Compd. 489, 140145 (2010).Google Scholar
Young, A.F., Sanloup, C., Gregoryanz, E., Scandolo, S., Hemley, R.E., and Mao, H.K.: Synthesis of novel transition metal nitrides IrN2 and OsN2. Phys. Rev. Lett. 96, 155501 (2006).Google Scholar
Peng, F., Chen, D., Fu, H., and Gao, T.: The phase transition and elastic property of osmium carbide under pressure. Phys. Status Solidi B 248, 12221226 (2011).Google Scholar
Peng, F., Peng, W., Fu, H., and Yang, X.: Elasticity and thermodynamic properties of RuB2 under pressure. Phys. B 404, 33633367 (2009).Google Scholar
Pettifor, D.G.: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345349 (1992).Google Scholar
Peng, F., Chen, D., and Yang, X.: First-principles calculations on elasticity of OsN2 under pressure. Solid State Commun. 149, 21352138 (2009).CrossRefGoogle Scholar
Sokolnikoff, I.S.: Mathematical Theory of Elasticity, 2nd ed. (Krieger, Malabar FL, 1983).Google Scholar
Aydin, S. and Simsek, M.: First-principles calculations of elemental crystalline boron phases under high pressure: Orthorhombic B28 and tetragonal B48. J. Alloys Compd. 509, 5219 (2011).CrossRefGoogle Scholar
Ravindran, P., Fast, L., Korzhavyi, P.A., and Johansson, B.: Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys., 84, 4891 (1998).CrossRefGoogle Scholar
Ranganathan, S.I. and Ostoja-Starzewski, M.: Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008).Google Scholar
Fine, M.E., Brown, L.D., and Marcus, H.L.: Elastic constants versus melting temperature in metals. Scr. Metall. 18, 951 (1984).Google Scholar
Alouani, M., Albers, R.C., and Methfessel, M.: Calculated elastic constants and structural properties of Mo and MoSi2. Phys. Rev. B: Condens. Matter Mater. Phys. 43, 6500 (1991).Google Scholar
Zhaochun, Z., Ruiwu, P., and Nianyi, C.: Artificial neural network prediction of the band gap and melting point of binary and ternary compound semiconductors. Mater. Sci. Eng., B 54, 149 (1998).Google Scholar
Momma, K. and Izumi, F.: Vesta: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653 (2008).Google Scholar
Reshak, A.H., Alahmed, Z.A., Azam, S.: Electronic structure, electronic charge density and optical properties analyses of Rb2Al2B2O7 compound: DFT Calculation Int. J. Electrochem. Sci. 9, 975989 (2014).Google Scholar
Adachi, S.: Properties of Group-IV, III–V and II–VI Semiconductors (John Wiley & Sons, Chichester, 2005).Google Scholar
Ravindran, P., Delin, A., Johansson, B., Eriksson, O., and Wills, J.M.: Electronic structure, chemical bonding, and optical properties of ferroelectric and antiferroelectric NaNO2. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 17761785 (1999).Google Scholar
Reshak, A.H. and Auluck, S.: Electronic structure, linear, nonlinear optical susceptibilities and birefringence of CuInX2 (X = S, Se, Te) chalcopyrite-structure compounds. PMC Phys. B 1(12), 117 (2008).Google Scholar
Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., and Luitz, J.: Software WIEN2k, http://www.wien2k.at/ (accessed 2001).Google Scholar
Artacho, E., Gale, J., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., and Soler, J.M.: Software Siesta, http://www.uam.es/siesta/ (accessed 2001).Google Scholar
Togo, A.: Phonopy manual Release 1.6.2, 2012.Google Scholar
Togo, A. and Tanaka, I.: First principles phonon calculations in materials science. Scr. Mater. 108, 15 (2015).Google Scholar