Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-17T15:12:51.228Z Has data issue: false hasContentIssue false

Scanning Electron Microscopy Reveals Two Distinct Classes of Erythroblastic Island Isolated from Adult Mammalian Bone Marrow

Published online by Cambridge University Press:  22 February 2016

Jia Hao Yeo
Affiliation:
Discipline of Anatomy & Histology, School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, NSW 2050, Australia
Bronwyn M. McAllan
Affiliation:
Discipline of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, NSW 2050, Australia
Stuart T. Fraser*
Affiliation:
Discipline of Anatomy & Histology, School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, NSW 2050, Australia Discipline of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, NSW 2050, Australia
*
*Corresponding author. stuart.fraser@sydney.edu.au
Get access

Abstract

Erythroblastic islands are multicellular clusters in which a central macrophage supports the development and maturation of red blood cell (erythroid) progenitors. These clusters play crucial roles in the pathogenesis observed in animal models of hematological disorders. The precise structure and function of erythroblastic islands is poorly understood. Here, we have combined scanning electron microscopy and immuno-gold labeling of surface proteins to develop a better understanding of the ultrastructure of these multicellular clusters. The erythroid-specific surface antigen Ter-119 and the transferrin receptor CD71 exhibited distinct patterns of protein sorting during erythroid cell maturation as detected by immuno-gold labeling. During electron microscopy analysis we observed two distinct classes of erythroblastic islands. The islands varied in size and morphology, and the number and type of erythroid cells interacting with the central macrophage. Assessment of femoral marrow isolated from a cavid rodent species (guinea pig, Cavis porcellus) and a marsupial carnivore species (fat-tailed dunnarts, Sminthopsis crassicaudata) showed that while the morphology of the central macrophage varied, two different types of erythroblastic islands were consistently identifiable. Our findings suggest that these two classes of erythroblastic islands are conserved in mammalian evolution and may play distinct roles in red blood cell production.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, T.D. & Dexter, T.M. (1982). Ultrastructural aspects of erythropoietic differentiation in long-term bone marrow culture. Differentiation 21, 8694.Google Scholar
An, X. & Mohandas, N. (2011). Erythroblastic islands, terminal erythroid differentiation and reticulocyte maturation. Int J Hematol 93, 139143.CrossRefGoogle ScholarPubMed
Angelillo-Scherrer, A., Burnier, L., Lambrechts, D., Fish, R.J., Tjwa, M., Plaisance, S., Sugamele, R., DeMol, M., Martinez-Soria, E., Maxwell, P.H., Lemke, G., Goff, S.P., Matsushima, G.K., Earp, H.S., Chanson, M., Collen, D., Izui, S., Schapira, M., Conway, E.M. & Carmeliet, P. (2008). Role of Gas6 in erythropoiesis and anemia in mice. J Clin Invest 118(2), 583596.Google Scholar
Bessis, M.C. (1958). L’ilot erythroblastique. Unite functionelle de la moelle osseuse. Rev Hematol 13, 811.Google Scholar
Bessis, M.C. & Breton-Gorius, J. (1962). Iron metabolism in the bone marrow as seen by electron microscopy: A critical review. Blood 19, 635663.CrossRefGoogle ScholarPubMed
Chasis, J.A. & Mohandas, N. (2008). Erythroblastic islands: Niches for erythropoiesis. Blood 112, 470478.Google Scholar
Chow, A., Huggins, M., Ahmed, J., Hashimoto, D., Lucas, D., Kunisaki, Y., Pinho, S., Leboeuf, M., Noizat, C., van Rooijen, N., Tanaka, M., Zhao, Z.J., Bergman, A., Merad, M. & Frenette, P.S. (2013). CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med 19(4), 429436.Google Scholar
Eshghi, S., Vogelezang, M.G., Hynes, R.O., Griffith, L.G. & Lodish, H.F. (2007). α4β1 integrin and erythropoietin mediate temporally distinct steps in erythropoiesis: Integrins in red cell development. J Cell Biol 177, 871880.Google Scholar
Eymard, N., Bessonov, N., Gandrillon, O., Koury, M.J. & Volpert, V. (2015). The role of spatial organization of cells in erythropoiesis. J Math Biol 70, 7197.Google Scholar
Fraser, S.T., Isern, J. & Baron, M.H. (2007). Maturation and enucleation of primitive erythroblasts during mouse embryogenesis is accompanied by changes in cell-surface antigen expression. Blood 109, 343352.Google Scholar
Fraser, S.T., Midwinter, R.G., Coupland, L.A., Kong, S., Berger, B.S., Yeo, J.H., Andrade, O.C., Cromer, D., Suarna, C., Lam, M., Maghzal, G.J., Chong, B.H., Parish, C.R. & Stocker, R. (2015). Heme oxygenase-1 deficiency alters erythroblastic island formation, steady-state erythropoiesis and red blood cell lifespan in mice. Haematologica 100(5), 601610.Google Scholar
Geiser, F. (2004). Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66, 239274.Google Scholar
Grossin, N., Wautier, M.-P. & Wautier, J.-L. (2009). Red blood cell adhesion in diabetes mellitus is mediated by advanced glycation end product receptor and is modulated by nitric oxide. Biorheology 46, 6372.CrossRefGoogle ScholarPubMed
Hanspal, M. & Hanspal, J.S. (1994). The association of erythroblasts with macrophages promotes erythroid proliferation and maturation: A 30-kD heparin-binding protein is involved in this contact. Blood 84, 34943504.Google Scholar
Hom, J., Dulmovits, B.M., Mohandas, N. & Blanc, L. (2015). The erythroblastic island as an emerging paradigm in the anemia of inflammation. Immunol Res 63, 7589.Google Scholar
Isern, J., Fraser, S.T., He, Z. & Baron, M.H. (2008). The fetal liver is a niche for maturation of primitive erythroid cells. Proc Nat Acad Sci U S A 105, 66626667.Google Scholar
Kawane, K., Fukuyama, H., Kondoh, G., Takeda, J., Ohsawa, Y., Uchiyama, Y. & Nagata, S. (2001). Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science (New York, NY) 292, 15461549.Google Scholar
Kina, T., Ikuta, K., Takayama, E., Wada, K., Majumdar, A.S., Weissman, I.L. & Katsura, Y. (2000). The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage. Br J Haematol 109, 280287.Google Scholar
Konstantinidis, D.G., Pushkaran, S., Johnson, J.F., Cancelas, J.A., Manganaris, S., Harris, C.E., Williams, D.A., Zheng, Y. & Kalfa, T.A. (2012). Signaling and cytoskeletal requirements in erythroblast enucleation. Blood 119, 61186127.CrossRefGoogle ScholarPubMed
Korolnek, T. & Hamza, I. (2015). Macrophages and iron trafficking at the birth and death of red cells. Blood 125, 28932897.CrossRefGoogle ScholarPubMed
Lee, G., Lo, A., Short, S.A., Mankelow, T.J., Spring, F., Parsons, S.F., Yazdanbakhsh, K., Mohandas, N., Anstee, D.J. & Chasis, J.A. (2006). Targeted gene deletion demonstrates that the cell adhesion molecule ICAM-4 is critical for erythroblastic island formation. Blood 108, 20642071.CrossRefGoogle ScholarPubMed
Lee, S.H., Crocker, P.R., Westaby, S., Key, N., Mason, D.Y., Gordon, S. & Weatherall, D.J. (1988). Isolation and immunocytochemical characterization of human bone marrow stromal macrophages in hemopoietic clusters. J Exp Med 168, 11931198.Google Scholar
Liu, A.P., Aguet, F., Danuser, G. & Schmid, S.L. (2010). Local clustering of transferrin receptors promotes clathrin-coated pit initiation. J Cell Biol 191, 13811393.Google Scholar
Liu, J., Guo, X., Mohandas, N., Chasis, J.A. & An, X. (2010). Membrane remodeling during reticulocyte maturation. Blood 115, 20212027.CrossRefGoogle ScholarPubMed
Malleret, B., Li, A., Zhang, R., Tan, KS., Suwanarusk, R., Claser, C., Cho, S.J., Koh, EG, Chu, C.S, Pukrittayakamee, S., Ng, M.L., Ginhoux, F, Ng, L.G, Lim, C.T., Nosten, F., Snounou, G., Rénia, L. & Russell, B. (2015). Plasmodium vivax: Restricted tropism and rapid remodelling of CD71-positive reticulocytes. Blood 128(8), 13141324.Google Scholar
Mohandas, N. & Prenant, M. (1978). Three-dimensional model of bone marrow. Blood 51, 633643.Google Scholar
Ramos, P., Casu, C., Gardenghi, S., Breda, L., Crielaard, B.J., Guy, E., Marongiu, M.F., Gupta, R., Levine, R.L., Abdel-Wahab, O., Ebert, B.L., van Rooijen, N., Ghaffari, S., Grady, R.W., Giardina, P.J. & Rivella, S. (2013). Macrophages support pathological erythropoiesis in polycythemia vera and beta;-thalassemia. Nat Med 19(4), 437445.CrossRefGoogle ScholarPubMed
Rhodes, M.M., Kopsombut, P., Bondurant, M.C., Price, J.O. & Koury, M.J. (2007). Adherence to macrophages in erythroblastic islands enhances erythroblast proliferation and increases erythrocyte production by a different mechanism than erythropoietin. Blood 111, 17001708.CrossRefGoogle ScholarPubMed
Sadahira, Y., Yoshino, T. & Monobe, Y. (1995). Very late activation antigen 4-vascular cell adhesion molecule 1 interaction is involved in the formation of erythroblastic islands. J Exp Med 181, 411415.CrossRefGoogle ScholarPubMed
Salomao, M., Chen, K., Villalobos, J., Mohandas, N., An, X. & Chasis, J.A. (2010). Hereditary spherocytosis and hereditary elliptocytosis: Aberrant protein sorting during erythroblast enucleation. Blood 116, 267269.CrossRefGoogle ScholarPubMed
Shayeghi, M., Latunde-Dada, G.O., Oakhill, J.S. & Laftah, A.H. (2005). Identification of an intestinal heme transporter. Cell 122(5), 789801.Google Scholar
Socolovsky, M., Nam, H.-S., Fleming, M.D., Haase, V.H., Brugnara, C. & Lodish, H.F. (2001). Ineffective erythropoiesis in Stat5a−/−5b−/− mice due to decreased survival of early erythroblasts. Blood 98(12), 32613273.CrossRefGoogle ScholarPubMed
Swerlick, R.A., Eckman, J.R., Kumar, A., Jeitler, M. & Wick, T.M. (1993). Alpha 4 beta 1-integrin expression on sickle reticulocytes: Vascular cell adhesion molecule-1-dependent binding to endothelium. Blood 82, 18911899.Google Scholar
Tukey, J.W. (1949). Comparing individual means in the analysis of variance. Biometrics 5, 99114.Google Scholar
Wautier, M.-P., Nemer, W.E., Gane, P., Rain, J.-D., Cartron, J.-P., Colin, Y., Le Van Kim, C. & Wautier, J.-L. (2007). Increased adhesion to endothelial cells of erythrocytes from patients with polycythemia vera is mediated by laminin alpha5 chain and Lu/BCAM. Blood 110, 894901.Google Scholar
Yokoyama, T., Etoh, T., Kitagawa, H., Tsukahara, S. & Kannan, Y. (2003). Migration of erythroblastic islands toward the sinusoid as erythroid maturation proceeds in rat bone marrow. J Vet Med Sci 65, 449452.Google Scholar
Yoshida, H., Kawane, K., Koike, M., Mori, Y., Uchiyama, Y. & Nagata, S. (2005). Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nat Cell Biol 437, 754758.Google Scholar