Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-17T15:32:25.629Z Has data issue: false hasContentIssue false

Live Cell Imaging of Actin Dynamics in the Filamentous Fungus Aspergillus nidulans

Published online by Cambridge University Press:  16 February 2016

Zachary Schultzhaus
Affiliation:
Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
Laura Quintanilla
Affiliation:
Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
Angelyn Hilton
Affiliation:
Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
Brian D. Shaw*
Affiliation:
Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
*
*Corresponding author. bdshaw@tamu.edu
Get access

Abstract

Hyphal cells of filamentous fungi grow at their tips in a method analogous to pollen tube and root hair elongation. This process, generally referred to as tip growth, requires precise regulation of the actin cytoskeleton, and characterizing the various actin structures in these cell types is currently an active area of research. Here, the actin marker Lifeact was used to document actin dynamics in the filamentous fungus Aspergillus nidulans. Contractile double rings were observed at septa, and annular clusters of puncta were seen subtending growing hyphal tips, corresponding to the well-characterized subapical endocytic collar. However, Lifeact also revealed two additional structures. One, an apical array, was dynamic on the face opposite the tip, while a subapical web was dynamic on the apical face and was located several microns behind the growth site. Each was observed turning into the other over time, implying that they could represent different localizations of the same structure, although hyphae with a subapical web grew faster than those exhibiting an apical array. The subapical web has not been documented in any filamentous fungus to date, and is separate from the networks of F-actin seen in other tip-growing organisms surrounding septa or stationary along the plasmalemma.

Type
Special Issue on Imaging Plant Biology
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

These authors contributed equally to this manuscript.

References

Anderson, J.M. & Soll, D.R. (1986). Differences in actin localization during bud and hypha formation in the yeast Candida albicans . J Gen Microbiol 132(7), 20352047.Google Scholar
Araujo-Bazán, L., Peñalva, M.A. & Espeso, E.A. (2008). Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans . Mol Microbiol 67(4), 891905.CrossRefGoogle ScholarPubMed
Araujo-Palomares, C.L., Castro-Longoria, E. & Riquelme, M. (2007). Ontogeny of the Spitzenkörper in germlings of Neurospora crassa . Fungal Genet Biol 44(6), 492503.Google Scholar
Berepiki, A., Lichius, A. & Read, N.D. (2011). Actin organization and dynamics in filamentous fungi. Nat Rev Microbiol 2(12), 867887.Google Scholar
Berepiki, A., Lichius, A., Shoji, J.-Y., Tilsner, J. & Read, N.D. (2010). F-actin dynamics in Neurospora crassa . Eukaryot Cell 9(4), 547557.CrossRefGoogle ScholarPubMed
Böhmer, C., Ripp, C. & Bölker, M. (2009). The germinal centre kinase Don3 triggers the dynamic rearrangement of higher‐order septin structures during cytokinesis in Ustilago maydis . Mol Microbiol 74(6), 14841496.CrossRefGoogle ScholarPubMed
Bou Daher, F. & Geitmann, A. (2011). Actin is involved in pollen tube tropism through redefining the spatial targeting of secretory vesicles. Traffic 12(11), 15371551.CrossRefGoogle ScholarPubMed
Bretscher, A. & Weber, K. (1980). Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures. J Cell Biol 86(1), 335340.Google Scholar
Caballero-Lima, D., Kaneva, I.N., Watton, S.P., Sudbery, P.E. & Craven, C.J. (2013). The spatial distribution of the exocyst and actin cortical patches is sufficient to organize hyphal tip growth. Eukaryot Cell 12(7), 9981008.Google Scholar
Delgado-Álvarez, D.L., Bartnicki-García, S., Seiler, S. & Mouriño-Pérez, R.R. (2014). Septum development in Neurospora crassa: The septal actomyosin tangle. PLoS One 9, e96744.Google Scholar
Delgado-Álvarez, D.L., Callejas-Negrete, O.A., Gómez, N., Freitag, M., Roberson, R.W., Smith, L.G. & Mouriño-Pérez, R.R. (2010). Visualization of F-actin localization and dynamics with live cell markers in Neurospora crassa . Fungal Genet Biol 47(7), 573586.CrossRefGoogle ScholarPubMed
Drubin, D., Miller, G. & Botstein, K.G. (1988). Yeast actin-binding proteins: Evidence for a role in morphogenesis. J Cell Biol 107(6), 25512561.CrossRefGoogle ScholarPubMed
Evangelista, M., Zigmond, S. & Boone, C. (2003). Formins: Signaling effectors for assembly and polarization of actin filaments. J Cell Sci 116(13), 26032611.CrossRefGoogle ScholarPubMed
Firat-Karalar, E.N. & Welch, M.D. (2011). New mechanisms and functions of actin nucleation. Curr Opin Cell Biol 23(1), 413.Google Scholar
Fujimoto, L.M., Roth, R., Heuser, J.E. & Schmid, S.L. (2000). Actin assembly plays a variable, but not obligatory role in receptor‐mediated endocytosis. Traffic 1(2), 161171.Google Scholar
Glass, N.L., Rasmussen, C., Roca, M.G. & Read, N.D. (2004). Hyphal homing, fusion and mycelial interconnectedness. Trends Microbiol 12(3), 135141.Google Scholar
Hanein, D., Matsudaira, P. & DeRosier, D.J. (1997). Evidence for a conformational change in actin induced by fimbrin (N375) binding. J Cell Biol 139(2), 387396.Google Scholar
Harris, S.D. (2001). Septum formation in Aspergillus nidulans . Curr Opin Microbiol 4(6), 736739.CrossRefGoogle ScholarPubMed
Harris, S.D. (2006). Cell polarity in filamentous fungi: Shaping the mold. Int Rev Cytol 251, 4177.Google Scholar
Harris, S.D. (2008). Branching of fungal hyphae: Regulation, mechanisms and comparison with other branching systems. Mycologia 100(6), 823832.Google Scholar
Harris, S.D., Hamer, L., Sharpless, K.E. & Hamer, J.E. (1997). The Aspergillus nidulans sepA gene encodes an FH1/2 protein involved in cytokinesis and the maintenance of cellular polarity. EMBO J 16(12), 34743483.CrossRefGoogle ScholarPubMed
Harris, S.D., Morrell, J.L. & Hamer, J.E. (1994). Identification and characterization of Aspergillus nidulans mutants defective in cytokinesis. Genetics 136(2), 517532.Google Scholar
Hervás-Aguilar, A. & Peñalva, M.A. (2010). Endocytic machinery protein SlaB is dispensable for polarity establishment but necessary for polarity maintenance in hyphal tip cells of Aspergillus nidulans . Eukaryot Cell 9(10), 15041518.CrossRefGoogle ScholarPubMed
Hickey, P.C., Jacobson, D.J., Read, N.D. & Louise Glass, N. (2002). Live-cell imaging of vegetative hyphal fusion in Neurospora crassa . Fungal Genet Biol 37(1), 109119.Google Scholar
Hill, T.W., Jackson-Hayes, L., Wang, X. & Hoge, B.L. (2015). A mutation in the converter subdomain of Aspergillus nidulans MyoB blocks constriction of the actomyosin ring in cytokinesis. Fungal Genet Biol 75, 7283.CrossRefGoogle ScholarPubMed
Holmes, K.C., Popp, D., Gebhard, W. & Kabsch, W. (1990). Atomic model of the actin filament. Nature 347(6288), 4449.CrossRefGoogle ScholarPubMed
Horio, T. & Oakley, B.R. (2005). The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans . Mol Biol Cell 16(2), 918926.Google Scholar
Kaminskyj, S. (2001). Fundamentals of growth, storage, genetics and microscopy of Aspergillus nidulans . Fungal Genet Newsl 48, 2531.Google Scholar
Karpova, T.S., Moltz, S.L., Riles, L.E., Guldener, U., Hegemann, J.H., Veronneau, S., Bussey, H. & Cooper, J.A. (1998). Depolarization of the actin cytoskeleton is a specific phenotype in Saccharomyces cerevisiae . J Cell Sci 111(17), 26892696.Google Scholar
Katayama, T., Uchida, H., Ohta, A. & Horiuchi, H. (2012). Involvement of protein kinase C in the suppression of apoptosis and in polarity establishment in Aspergillus nidulans under conditions of heat stress. PLoS One 7, e50503.CrossRefGoogle ScholarPubMed
Köhli, M., Galati, V., Boudier, K., Roberson, R.W. & Philippsen, P. (2008). Growth-speed-correlated localization of exocyst and polarisome components in growth zones of Ashbya gossypii hyphal tips. J Cell Sci 121(23), 38783889.CrossRefGoogle ScholarPubMed
Krijgsheld, P., Bleichrodt, R., van Veluw, G.J., Wang, F., Müller, W.H., Dijksterhuis, J. & Wösten, H.A.B. (2013). Development in Aspergillus . Stud Mycol 74, 129.Google Scholar
Kübler, E. & Riezman, H. (1993). Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J 12(7), 28552862.Google Scholar
Lichius, A., Berepiki, A. & Read, N.D. (2011). Form follows function—The versatile fungal cytoskeleton. Fungal Biol 115(6), 518540.Google Scholar
Lin, C.-H. & Forscher, P. (1995). Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron 14(4), 763771.Google Scholar
Manck, R., Ishitsuka, Y., Herrero, S., Takeshita, N., Nienhaus, G.U. & Fischer, R. (2015). Genetic evidence for a microtubule-capture mechanism during polarised growth of Aspergillus nidulans . J Cell Sci 128(19), 35693582.Google Scholar
McGoldrick, C.A., Gruver, C. & May, G.S. (1995). myoA of Aspergillus nidulans encodes an essential myosin I required for secretion and polarized growth. J Cell Biol 128(4), 577587.Google Scholar
Meijer, H.J.G., Hua, C., Kots, K., Ketelaar, T. & Govers, F. (2014). Actin dynamics in Phytophthora infestans; rapidly reorganizing cables and immobile, long-lived plaques. Cell Microbiol 16(6), 948961.CrossRefGoogle ScholarPubMed
Menke, J., Weber, J., Broz, K. & Kistler, H.C. (2013). Cellular development associated with induced mycotoxin synthesis in the filamentous fungus Fusarium graminearum . PLoS One 8, e63077.Google Scholar
Mishra, M., Huang, J. & Balasubramanian, M.K. (2014). The yeast actin cytoskeleton. FEMS Microbiol Rev 38(2), 213227.Google Scholar
Mooren, O.L., Galletta, B.J. & Cooper, J.A. (2012). Roles for actin assembly in endocytosis. Annu Rev Biochem 81, 661686.Google Scholar
Mouriño-Pérez, R.R. (2013). Septum development in filamentous ascomycetes. Fungal Biol Rev 27(1), 19.CrossRefGoogle Scholar
Mulholland, J., Preuss, D., Moon, A., Wong, A., Drubin, D. & Botstein, D. (1994). Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J Cell Biol 125(2), 381391.CrossRefGoogle ScholarPubMed
Mullins, R.D., Heuser, J.A. & Pollard, T.D. (1998). The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Nat Acad Sci U S A 95(11), 61816186.Google Scholar
Naoz, M., Manor, U., Sakaguchi, H., Kachar, B. & Gov, N.S. (2008). Protein localization by actin treadmilling and molecular motors regulates stereocilia shape and treadmilling rate. Biophys J 95(12), 57065718.CrossRefGoogle ScholarPubMed
Pantazopoulou, A. & Peñalva, M.A. (2011). Characterization of Aspergillus nidulans RabC/Rab6. Traffic 12(4), 386406.CrossRefGoogle ScholarPubMed
Pantazopoulou, A., Pinar, M., Xiang, X. & Peñalva, M.A. (2014). Maturation of late Golgi cisternae into RabE/RAB11 exocytic post-Golgi carriers visualized in vivo. Mol Biol Cell 25(16), 24282443.Google Scholar
Peñalva, M.Á. (2010). Endocytosis in filamentous fungi: Cinderella gets her reward. Curr Opin Microbiol 13(6), 684692.CrossRefGoogle ScholarPubMed
Pollard, T.D. (2007). Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct 36, 451477.CrossRefGoogle ScholarPubMed
Pruyne, D. & Bretscher, A. (2000). Polarization of cell growth in yeast. J Cell Sci 113, 571585.Google Scholar
Pruyne, D., Evangelista, M., Yang, C., Bi, E., Zigmond, S., Bretscher, A. & Boone, C. (2002). Role of formins in actin assembly: Nucleation and barbed-end association. Science 297(5581), 612615.Google Scholar
Pruyne, D.W., Schott, D.H. & Bretscher, A. (1998). Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J Cell Biol 143(7), 19311945.CrossRefGoogle ScholarPubMed
Read, N.D., Goryachev, A.B. & Lichius, A. (2012). The mechanistic basis of self-fusion between conidial anastomosis tubes during fungal colony initiation. Fungal Biol Rev 26(1), 111.Google Scholar
Riedl, J., Crevenna, A.H., Kessenbrock, K., Yu, J.H., Neukirchen, D., Bista, M., Bradke, F., Jenne, D., Holak, T.A. & Werb, Z. (2008). Lifeact: A versatile marker to visualize F-actin. Nat Methods 5(7), 605607.Google Scholar
Roca, M.G., Arlt, J., Jeffree, C.E. & Read, N.D. (2005). Cell biology of conidial anastomosis tubes in Neurospora crassa . Eukaryot Cell 4(5), 911919.Google Scholar
Rodal, A.A., Kozubowski, L., Goode, B.L., Drubin, D.G. & Hartwig, J.H. (2005). Actin and septin ultrastructures at the budding yeast cell cortex. Mol Biol Cell 16(1), 371384.Google Scholar
Röhrig, J., Kastner, C. & Fischer, R. (2013). Light inhibits spore germination through phytochrome in Aspergillus nidulans . Curr Genet 59(1–2), 5562.Google Scholar
Rouayrenc, J.F. & Travers, F. (1981). The first step in the polymerisation of actin. Eur J Biochem 116(1), 7377.Google Scholar
Schultzhaus, Z., Yan, H. & Shaw, B. (2015). Aspergillus nidulans flippase DnfA is cargo of the endocytic collar, and plays complementary roles in growth and phosphatidylserine asymmetry with another flippase, DnfB. Mol Microbiol 97(1), 1832.CrossRefGoogle ScholarPubMed
Schultzhaus, Z.S. & Shaw, B.D. (2015). Endocytosis and exocytosis in hyphal growth. Fungal Biol Rev 29(2), 4353.Google Scholar
Sharpless, K.E. & Harris, S.D. (2002). Functional characterization and localization of the Aspergillus nidulans formin sepA . Mol Biol Cell 13(2), 469479.Google Scholar
Shaw, B.D., Chung, D.-W., Wang, C.-L., Quintanilla, L.A. & Upadhyay, S. (2011). A role for endocytic recycling in hyphal growth. Fungal Biol 115(6), 541546.Google Scholar
Shaw, B.D. & Upadhyay, S. (2005). Aspergillus nidulans swoK encodes an RNA binding protein that is important for cell polarity. Fungal Genet Biol 42(10), 862872.CrossRefGoogle ScholarPubMed
Skau, C.T., Courson, D.S., Bestul, A.J., Winkelman, J.D., Rock, R.S., Sirotkin, V. & Kovar, D.R. (2011). Actin filament bundling by fimbrin is important for endocytosis, cytokinesis, and polarization in fission yeast. J Biol Chem 286(30), 2696426977.Google Scholar
Smith, S.J. (1988). Neuronal cytomechanics: The actin-based motility of growth cones. Science 242(4879), 708715.Google Scholar
Svitkina, T.M. & Borisy, G.G. (1999). Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145(5), 10091026.Google Scholar
Taheri-Talesh, N., Horio, T., Araujo-Bazán, L., Dou, X., Espeso, E.A., Peñalva, M.A., Osmani, S.A. & Oakley, B.R. (2008). The tip growth apparatus of Aspergillus nidulans . Mol Biol Cell 19(4), 14391449.Google Scholar
Taheri-Talesh, N., Xiong, Y. & Oakley, B.R. (2012). The functions of myosin II and myosin V homologs in tip growth and septation in Aspergillus nidulans . PLoS One 7, e31218.CrossRefGoogle ScholarPubMed
Takeshita, N., Manck, R., Grün, N., de Vega, S.H. & Fischer, R. (2014). Interdependence of the actin and the microtubule cytoskeleton during fungal growth. Curr Opin Microbiol 20, 3441.Google Scholar
Torralba, S., Raudaskoski, M., Pedregosa, A.M. & Laborda, F. (1998). Effect of Cytochalasin A on apical growth, actin cytoskeleton organization and enzyme secretion in Aspergillus nidulans . Microbiology 144(1), 4553.Google Scholar
Upadhyay, S. & Shaw, B.D. (2008). The role of actin, fimbrin and endocytosis in growth of hyphae in Aspergillus nidulans . Mol Microbiol 68(3), 690705.CrossRefGoogle ScholarPubMed
van der Honing, H.S., van Bezouwen, L.S., Emons, A.M.C. & Ketelaar, T. (2011). High expression of Lifeact in Arabidopsis thaliana reduces dynamic reorganization of actin filaments but does not affect plant development. Cytoskeleton 68(10), 578587.Google Scholar
Vidali, L., Rounds, C.M., Hepler, P.K. & Bezanilla, M. (2009). Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS One 4, e5744.Google Scholar
Wang, C. & Shaw, B. (in press), F-actin localization dynamics during appressorium formation in Colletotrichum graminicola . Mycologia, doi:10.3852/15-068.Google Scholar
Zhou, X., Zhang, H., Li, G., Shaw, B. & Xu, J.-R. (2012). The Cyclase-associated protein Cap1 is important for proper regulation of infection-related morphogenesis in Magnaporthe oryzae . PLoS Pathog 8, e1002911.Google Scholar
Zigmond, S.H. (2004). Formin-induced nucleation of actin filaments. Curr Opin Cell Biol 16(1), 99105.Google Scholar

Schultzhaus supplementary material

Supplementary Movie 1

Download Schultzhaus supplementary material(Video)
Video 43.7 MB

Schultzhaus supplementary material

Supplementary Movie 2

Download Schultzhaus supplementary material(Video)
Video 13.9 MB

Schultzhaus supplementary material

Supplementary Movie 3

Download Schultzhaus supplementary material(Video)
Video 43.4 MB

Schultzhaus supplementary material

Supplementary Movie 4

Download Schultzhaus supplementary material(Video)
Video 23.6 MB

Schultzhaus supplementary material

Supplementary Movie 5

Download Schultzhaus supplementary material(Video)
Video 44.8 MB

Schultzhaus supplementary material

Supplementary Movie 6

Download Schultzhaus supplementary material(Video)
Video 31.5 MB

Schultzhaus supplementary material

Supplementary Movie 7

Download Schultzhaus supplementary material(Video)
Video 23.5 MB

Schultzhaus supplementary material

Supplementary Movie 8

Download Schultzhaus supplementary material(Video)
Video 77.9 MB

Schultzhaus supplementary material

Supplementary Movie 9

Download Schultzhaus supplementary material(Video)
Video 57.6 MB

Schultzhaus supplementary material

Supplementary Movie 10

Download Schultzhaus supplementary material(Video)
Video 45.7 MB

Schultzhaus supplementary material

Supplementary Movie 11

Download Schultzhaus supplementary material(Video)
Video 66.4 MB