Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T23:05:40.068Z Has data issue: false hasContentIssue false

Investigation of the Transition from Local Anodic Oxidation to Electrical Breakdown During Nanoscale Atomic Force Microscopy Electric Lithography of Highly Oriented Pyrolytic Graphite

Published online by Cambridge University Press:  05 February 2016

Ye Yang*
Affiliation:
The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
Jun Lin
Affiliation:
The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
*
*Corresponding author. yangye0707@shnu.edu.cn
Get access

Abstract

As one of the tip-based top-down nanoscale machining methods, atomic force microscopy (AFM) electric lithography is capable of directly generating flexible nanostructures on conductive or semi-conductive sample surfaces. In this work, distinct fabrication mechanisms and mechanism transition from local anodic oxidation (LAO) to electrical breakdown (BD) in the AFM nanoscale electric lithography of the highly oriented pyrolytic graphite sample surface was studied. We provide direct evidence of the transition process mechanism through the detected current–voltage (I–V) curve. Characteristics of the fabrication results under the LAO, transition, and BD regions involving the oxide growth rate or material removal rate and AFM probe wear are analyzed in detail. These factors are of great significance for improving the machining controllability and expanding its potential applications.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M.J., Tung, V.C. & Kaner, R.B. (2010). Honeycomb carbon: A review of graphene. Chem Rev 110, 132145.Google Scholar
Bo, X.-Z., Rokhinson, L.P., Yin, H., Tsui, D.C. & Sturm, J.C. (2002). Nanopatterning of Si/SiGe electrical devices by atomic force microscopy. Appl Phys Lett 81, 32633265.Google Scholar
Davis, Z.J., Abadal, G., Hansen, O., Borisé, X., Barniol, N., Pérez-Murano, F. & Boisen, A. (2003). AFM lithography of aluminum for fabrication of nanomechanical systems. Ultramicroscopy 97, 467472.Google Scholar
Dehzangi, A., Abdullah, A.M., Larki, F., Hutagalung, S.D., Saion, E.B., Hamidon, M.N., Hassan, J. & Gharayebi, Y. (2012). Electrical property comparison and charge transmission in p-type double gate and single gate junctionless accumulation transistor fabricated by AFM nanolithography. Nanoscale Res Lett 7, 381.Google Scholar
Espinosa, F.M., Ryu, Y.K., Marinov, K., Dumcenco, D., Kis, A. & Garcia, R. (2015). Direct fabrication of thin layer MoS2 field-effect nanoscale transistors by oxidation scanning probe lithography. Appl Phys Lett 106, 103503.Google Scholar
Fernandez-Cuesta, I., Borrisé, X. & Pérez-Murano, F. (2006). Atomic force microscopy local anodic oxidation of thin Si3N4 layers for robust prototyping of nanostructures. J Vacuum Sci Technol B 24, 29882992.Google Scholar
Hirooka, M., Tanaka, H., Li, R. & Kawai, R. (2004). Nanoscale modification of electrical and magnetic properties of Fe3O4 thin film by atomic force microscopy lithography. Appl Phys Lett 85, 18111813.Google Scholar
Kurra, N., Prakash, G., Basavaraja, S., Fisher, T.S., Kulkarni, G.U. & Reifenberger, R.G. (2011). Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography. Nanotechnology 22, 245302.Google Scholar
Kurra, N., Reifenberger, R.G. & Kulkarni, G.U. (2014). Nanocarbon-scanning probe microscopy synergy: Fundamental aspects to nanoscale devices. ACS Appl Mater Interfaces 6, 61476163.Google Scholar
Kurra, N., Scott, A. & Kulkarni, G.U. (2010). Electrocondensation and evaporation of attoliter water droplets: Direct visualization using atomic force microscopy. Nano Res 3, 307316.CrossRefGoogle Scholar
Kwon, G., Chu, G., Yoo, J., Kim, H., Han, C., Chung, C., Lee, J. & Lee, H. (2012). Fabrication of uniform and high resolution copper nanowire using intermediate self-assembled monolayers through direct AFM lithography. Nanotechnology 23, 185307.Google Scholar
Legrand, B., Deresmes, D. & Stiévenard, D. (2002). Silicon nanowires with sub 10 nm lateral dimensions: From atomic force microscope lithography based fabrication to electrical measurements. J Vac Sci Technol B 20, 862870.Google Scholar
Martínez, R.V., Martínez, J. & Garcia, R. (2010). Silicon nanowire circuits fabricated by AFM oxidation nanolithography. Nanotechnology 21, 245301.CrossRefGoogle ScholarPubMed
Masubuchi, S., Ono, M., Yoshida, K., Hirakawa, K. & Machida, T. (2009). Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope. Appl Phys Lett 94, 082107.Google Scholar
Moghadam, A.D., Omrani, E., Menezes, P.L. & Rohatgi, P.K. (2015). Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—a review. Compos Part B Eng 77, 402420.CrossRefGoogle Scholar
Park, J.-Y., Yaish, Y., Brink, M., Rosenblatt, S. & McEuen, P.L. (2002). Electrical cutting and nicking of carbon nanotubes using an atomic force microscope. Appl Phys Lett 80, 44464448.Google Scholar
Rosa, L.G. & Liang, J. (2009). Atomic force microscope nanolithography: Dip-pen, nanoshaving, nanografting, tapping mode, electrochemical and thermal nanolithography. J Phys Condens Matter 21, 483001.Google Scholar
Rouhi, J., Mahmud, S., Hutagalung, S.D. & Naderi, N. (2012). Field emission in lateral silicon diode fabricated by atomic force microscopy lithography. Electron Lett 48, 712714.Google Scholar
Takemura, Y. & Shirakashi, J.-I. (2006). AFM lithography for fabrication of magnetic nanostructures and devices. J Magn Magn Mater 304, 1922.Google Scholar
Vasić, B., Kratzer, M., Matković, A., Nevosad, A., Ralević, U., Jovanović, D., Ganser, C., Teichert, C. & Gajić, R. (2013). Atomic force microscopy based manipulation of graphene using dynamic plowing lithography. Nanotechnology 24, 015303.Google Scholar
Wei, W. & Qu, X. (2012). Extraordinary physical properties for functionalized graphene. Small 8, 21382151.Google Scholar
Weng, L., Zhang, L., Chen, Y.P. & Rokhinson, L.P. (2008). Atomic force microscope local oxidation nanolithography of graphene. Appl Phys Lett 93, 093107.Google Scholar
Xie, X.N., Chung, H.J., Sow, C.H., Adamiak, K. & Wee, A.T. (2005). Electrical discharge in a nanometer-sized air/water gap observed by atomic force microscopy. J Am Chem Soc 127, 1556215567.Google Scholar
Xie, X.N., Deng, M., Xu, H., Yang, S.W., Qi, D.C., Gao, X.Y., Chung, H.J., Sow, C.H., Tan, V.B.C. & Wee, A.T. (2006). Creating polymer structures of tunable electric functionality by nanoscale discharge-assisted cross-linking and oxygenation. J Am Chem Soc 128, 27382744.Google Scholar
Yang, Y. & Zhao, W.S. (2013). Experimental study and theoretical analysis of the nanometre-scale line structure fabrication by AFM electric lithography. Int J Nanomanuf 9, 164177.Google Scholar