Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T00:24:40.259Z Has data issue: false hasContentIssue false

Cosmological evolution of the AGN kinetic luminosity function

Published online by Cambridge University Press:  01 August 2006

Andrea Merloni
Affiliation:
Max Planck Institut für Astrophysik, Garching, Germany email: am@mpa-garching.mpg.de
Sebastian Heinz
Affiliation:
Department of Astronomy, University of Wisconsin, Madison, WI, USA email: heinzs@astro.wisc.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a first attempt to derive the cosmological evolution of the kinetic luminosity function of AGN based on the joint evolution of the flat spectrum radio and hard X-ray selected AGN luminosity functions. An empirical correlation between jet power and radio core luminosity is found, which is consistent with the theoretical assumption that, below a certain Eddington ratio, SMBH accrete in a radiatively inefficient way, while most of the energy output is in the form of kinetic energy.

We show how the redshift evolution of the kinetic power density from such a low-ṁ mode of accretion makes it a good candidate to explain the so-called “radio mode” of AGN feedback as outlined in many galaxy formation schemes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Allen, S. W., Dunn, R. J. H., Fabian, A. C., Taylor, G. B. & Reynolds, C. S. 2006, MNRAS, 372, 21CrossRefGoogle Scholar
Bower, R., Benson, A. J., Malbon, R., Helly, J. C., Frenk, C. S., Baugh, C. M., Cole, S. & Lacey, C. G. 2006, MNRAS, 370, 645CrossRefGoogle Scholar
Croton, D. J., Springel, V., White, S. D. M., De Lucia, G., Frenk, C. S. & Gao, L. et al. 2006, MNRAS, 365, 11CrossRefGoogle Scholar
De Zotti, G., Ricci, R., Mesa, D., Silva, L., Mazzotta, P., Toffolatti, L. & González-Nuevo, J. 2005, A&A, 431, 893Google Scholar
Di Matteo, T., Springel, L. & Hernquist, L. 2005, Nature, 433, 604CrossRefGoogle Scholar
Falcke, H., Körding, E. & Markoff, S. 2004, A&A, 414, 895Google Scholar
Fender, R. P., Gallo, E. & Jonker, P. 2003, MNRAS (Letters), 343, L99CrossRefGoogle Scholar
Filho, M. E., Barthel, P. D. & Ho, L. C. 2006, A&A, 451, 71Google Scholar
Gallo, E., Fender, R. P., Miller-Jones, J. C. A., Merloni, A., Jonker, P. G. & Heinz, S. et al. 2006, MNRAS, 370, 1351CrossRefGoogle Scholar
Heinz, S., Grimm, H.-J. 2005, ApJ, 633, 384CrossRefGoogle Scholar
Marconi, A., Hunt, L. K. 2003, ApJL 589, L21CrossRefGoogle Scholar
Marconi, A., Risaliti, G., Gilli, R., Hunt, L. K., Maiolino, R. & Salvati, M. 2004, MNRAS, 351, 169CrossRefGoogle Scholar
Merloni, A., Heinz, S. & Di Matteo, T. 2003, MNRAS, 345, 1057 (MHD03)CrossRefGoogle Scholar
Nulsen, P. E. J. 2006, Proceedings of “Heating and Cooling in Clusters of Galaxies”, Boehringer, H., Schuecker, P., Pratt, G. W., Finoguenov, A. (eds.)Google Scholar
Rafferty, D. A., McNamara, B. R., Nulsen, P. E. J. & Wise, M. W. 2006, ApJ, astro-ph/0605323Google Scholar
Rees, M. J., Begelman, M. C., Blandford, R. D. & Phinney, E. S. 1982, Nature, 295, 17CrossRefGoogle Scholar
Urry, M., Padovani, P. 1991, ApJ, 371, 60CrossRefGoogle Scholar
Yu, Q., Tremaine, S. 2002, MNRAS, 335, 965CrossRefGoogle Scholar