Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T23:34:21.573Z Has data issue: false hasContentIssue false

Double affine Hecke algebras and generalized Jones polynomials

Published online by Cambridge University Press:  01 April 2016

Yuri Berest
Affiliation:
Department of Mathematics, Cornell University, Ithaca, NY 14853-4201, USA email berest@math.cornell.edu
Peter Samuelson
Affiliation:
Department of Mathematics, University of Toronto, Toronto, ON, M4Y 1H5, Canada email psam@math.utoronto.ca Current address: Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we propose and discuss implications of a general conjecture that there is a natural action of a rank 1 double affine Hecke algebra on the Kauffman bracket skein module of the complement of a knot $K\subset S^{3}$. We prove this in a number of nontrivial cases, including all $(2,2p+1)$ torus knots, the figure eight knot, and all 2-bridge knots (when $q=\pm 1$). As the main application of the conjecture, we construct three-variable polynomial knot invariants that specialize to the classical colored Jones polynomials introduced by Reshetikhin and Turaev. We also deduce some new properties of the classical Jones polynomials and prove that these hold for all knots (independently of the conjecture). We furthermore conjecture that the skein module of the unknot is a submodule of the skein module of an arbitrary knot. We confirm this for the same example knots, and we show that this implies that the colored Jones polynomials of $K$ satisfy an inhomogeneous recursion relation.

Type
Research Article
Copyright
© The Authors 2016 

References

Agol, I., Complete knot invariant?, MathOverflow, URL: http://mathoverflow.net/q/35687 (version: 2010-08-16).Google Scholar
Askey, R. and Wilson, J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , Mem. Amer. Math. Soc. 54 (1985); MR 783216 (87a:05023).Google Scholar
Barrett, J. W., Skein spaces and spin structures , Math. Proc. Cambridge Philos. Soc. 126 (1999), 267275; MR 1670233 (99k:57006).CrossRefGoogle Scholar
Berest, Y. and Chalykh, O., Quasi-invariants of complex reflection groups , Composito Math. 147 (2011), 9651002; MR 2801407.CrossRefGoogle Scholar
Berest, Y. and Samuelson, P., Dunkl operators and quasi-invariants of complex reflection groups , in Mathematical aspects of quantization, Contemporary Mathematics, vol. 583 (American Mathematical Society, Providence, RI, 2012), 123; MR 3013091.Google Scholar
Brumfiel, G. W. and Hilden, H. M., SL(2) representations of finitely presented groups , Contemporary Mathematics, vol. 187 (American Mathematical Society, Providence, RI, 1995); MR 1339764 (96g:20004).Google Scholar
Bullock, D., Rings of SL2(C)-characters and the Kauffman bracket skein module , Comment. Math. Helv. 72 (1997), 521542; MR 1600138 (98k:57008).Google Scholar
Bullock, D. and Lo Faro, W., The Kauffman bracket skein module of a twist knot exterior , Algebr. Geom. Topol. 5 (2005), 107118; (electronic); MR 2135547 (2006a:57012).CrossRefGoogle Scholar
Bullock, D. and Przytycki, J. H., Multiplicative structure of Kauffman bracket skein module quantizations , Proc. Amer. Math. Soc. 128 (2000), 923931; MR 1625701 (2000e:57007).CrossRefGoogle Scholar
Burde, G. and Zieschang, H., Knots, de Gruyter Studies in Mathematics, vol. 5, second edition (Walter de Gruyter, Berlin, 2003); MR 1959408 (2003m:57005).Google Scholar
Cautis, S., Kamnitzer, J. and Morrison, S., Webs and quantum skew Howe duality , Math. Ann. 360 (2014), 351390; MR 3263166.Google Scholar
Charles, L. and Marché, J., Knot state asymptotics I: AJ conjecture and Abelian representations , Publ. Math. Inst. Hautes Études Sci. 121 (2015), 279322; MR 3349834.Google Scholar
Charles, L. and Marché, J., Knot state asymptotics II: Witten conjecture and irreducible representations , Publ. Math. Inst. Hautes Études Sci. 121 (2015), 323361; MR 3349835.Google Scholar
Chen, Q., Liu, K., Peng, P. and Zhu, S., Congruent skein relations for colored HOMFLY-PT invariants and colored Jones polynomials, Preprint (2014), arXiv:1402.3571.Google Scholar
Cherednik, I., Double affine Hecke algebras and Macdonald’s conjectures , Ann. of Math. (2) 141 (1995), 191216; MR 1314036 (96m:33010).Google Scholar
Cherednik, I., Double affine Hecke algebras , London Mathematical Society Lecture Note Series, vol. 319 (Cambridge University Press, Cambridge, 2005); MR 2133033 (2007e:32012).Google Scholar
Cherednik, I., Jones polynomials of torus knots via DAHA , Int. Math. Res. Not. IMRN 2013 (2013), 53665425; MR 3142259.CrossRefGoogle Scholar
Cooper, D., Culler, M., Gillet, H., Long, D. D. and Shalen, P. B., Plane curves associated to character varieties of 3-manifolds , Invent. Math. 118 (1994), 4784; MR 1288467 (95g:57029).CrossRefGoogle Scholar
Etingof, P., Oblomkov, A. and Rains, E., Generalized double affine Hecke algebras of rank 1 and quantized del Pezzo surfaces , Adv. Math. 212 (2007), 749796; MR 2329319 (2008h:20006).Google Scholar
Fox, R. H., On the complementary domains of a certain pair of inequivalent knots , Indag. Math. 14 (1952), 3740; MR 0048024 (13,966c).Google Scholar
Frohman, C. and Gelca, R., Skein modules and the noncommutative torus , Trans. Amer. Math. Soc. 352 (2000), 48774888; MR 1675190 (2001b:57014).Google Scholar
Fukuhara, S., Explicit formulae for two-bridge knot polynomials , J. Aust. Math. Soc. 78 (2005), 149166; MR 2141874 (2006f:57013).Google Scholar
Garoufalidis, S. and , T. T. Q., The colored Jones function is q-holonomic , Geom. Topol. 9 (2005), 12531293; (electronic); MR 2174266 (2006j:57029).Google Scholar
Garoufalidis, S. and , T. T. Q., Asymptotics of the colored Jones function of a knot , Geom. Topol. 15 (2011), 21352180; MR 2860990.Google Scholar
Gelca, R., Non-commutative trigonometry and the A-polynomial of the trefoil knot , Math. Proc. Cambridge Philos. Soc. 133 (2002), 311323; MR 1912404 (2004c:57021).CrossRefGoogle Scholar
Gelca, R. and Sain, J., The noncommutative A-ideal of a (2, 2p + 1)-torus knot determines its Jones polynomial , J. Knot Theory Ramifications 12 (2003), 187201; MR 1967240 (2004d:57015).Google Scholar
Gelca, R. and Sain, J., The computation of the non-commutative generalization of the A-polynomial of the figure-eight knot , J. Knot Theory Ramifications 13 (2004), 785808; MR 2088746 (2005f:57020).CrossRefGoogle Scholar
Gordon, C. McA. and Luecke, J., Knots are determined by their complements , J. Amer. Math. Soc. 2 (1989), 371415; MR 965210 (90a:57006a).Google Scholar
Habiro, K., A unified Witten–Reshetikhin–Turaev invariant for integral homology spheres , Invent. Math. 171 (2008), 181; MR 2358055 (2009b:57020).Google Scholar
Kirby, R. and Melvin, P., The 3-manifold invariants of Witten and Reshetikhin–Turaev for sl(2, C) , Invent. Math. 105 (1991), 473545; MR 1117149 (92e:57011).Google Scholar
Koornwinder, T. H., Zhedanov’s algebra AW(3) and the double affine Hecke algebra in the rank one case. II. The spherical subalgebra , SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 052, 17; MR 2425640 (2010e:33028).Google Scholar
, T. T. Q., The colored Jones polynomial and the A-polynomial of knots , Adv. Math. 207 (2006), 782804; MR 2271986 (2007k:57021).Google Scholar
Lubotzky, A. and Magid, A. R., Varieties of representations of finitely generated groups , Mem. Amer. Math. Soc. 58 (1985); MR 818915 (87c:20021).Google Scholar
Lusztig, G., Affine Hecke algebras and their graded version , J. Amer. Math. Soc. 2 (1989), 599635; MR 991016 (90e:16049).Google Scholar
Macdonald, I. G., Affine Hecke algebras and orthogonal polynomials , Cambridge Tracts in Mathematics, vol. 157 (Cambridge University Press, Cambridge, 2003); MR 1976581 (2005b:33021).Google Scholar
Minkus, J., The branched cyclic coverings of 2 bridge knots and links , Mem. Amer. Math. Soc. 35 (1982); MR 643587 (83g:57004).Google Scholar
Noumi, M. and Stokman, J. V., Askey–Wilson polynomials: an affine Hecke algebra approach , in Laredo lectures on orthogonal polynomials and special functions, Advances in the Theory of Special Functions and Orthogonal Polynomials (Nova Science, Hauppauge, NY, 2004), 111144; MR 2085854 (2005h:42057).Google Scholar
Oblomkov, A., Double affine Hecke algebras of rank 1 and affine cubic surfaces , Int. Math. Res. Not. IMRN 2004 877912; MR 2037756 (2005j:20005).CrossRefGoogle Scholar
Przytycki, J. H., Skein modules of 3-manifolds , Bull. Pol. Acad. Sci. Math. 39 (1991), 91100; MR 1194712 (94g:57011).Google Scholar
Przytycki, J. H. and Sikora, A. S., On skein algebras and Sl2(C)-character varieties , Topology 39 (2000), 115148; MR 1710996 (2000g:57026).CrossRefGoogle Scholar
Reshetikhin, N. Yu. and Turaev, V. G., Ribbon graphs and their invariants derived from quantum groups , Comm. Math. Phys. 127 (1990), 126; MR 1036112 (91c:57016).Google Scholar
Richardson, R. W., Commuting varieties of semisimple Lie algebras and algebraic groups , Composito Math. 38 (1979), 311327; MR 535074 (80c:17009).Google Scholar
Sahi, S., Nonsymmetric Koornwinder polynomials and duality , Ann. of Math. (2) 150 (1999), 267282; MR 1715325 (2002b:33018).Google Scholar
Samuelson, P., Kauffman bracket skein modules and the quantum torus, PhD thesis, Cornell University (2012).Google Scholar
Samuelson, P., A topological construction of Cherednik’s $\mathfrak{sl}_{2}$ torus knot polynomials, Preprint (2014), arXiv:1408.0483.Google Scholar
Scott, P., The geometries of 3-manifolds , Bull. Lond. Math. Soc. 15 (1983), 401487; MR 705527 (84m:57009).Google Scholar
Sikora, A. S., Skein theory for SU(n)-quantum invariants , Algebr. Geom. Topol. 5 (2005), 865897; (electronic); MR 2171796 (2006j:57033).Google Scholar
Sikora, A. S., Character varieties of abelian groups , Math. Z. 277 (2014), 241256; MR 3205770.Google Scholar
Sikora, A. S. and Westbury, B. W., Confluence theory for graphs , Algebr. Geom. Topol. 7 (2007), 439478; MR 2308953 (2008f:57004).Google Scholar
Stokman, J. V., Difference Fourier transforms for nonreduced root systems , Selecta Math. (N.S.) 9 (2003), 409494; MR 2006574 (2004h:33040).CrossRefGoogle Scholar
Terwilliger, P., The universal Askey–Wilson algebra and DAHA of type (C 1 , C 1) , SIGMA Symmetry Integrability Geom. Methods Appl. 9 (2013), Paper 047, 40; MR 3116183.Google Scholar
Thaddeus, M., Mirror symmetry, Langlands duality, and commuting elements of Lie groups , Int. Math. Res. Not. IMRN 2001 (2001), 11691193, doi:10.1155/S1073792801000551;MR 1862614 (2002h:14019).Google Scholar
Waldhausen, F., On irreducible 3-manifolds which are sufficiently large , Ann. of Math. (2) 87 (1968), 5688, MR 0224099 (36 #7146).Google Scholar