Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T14:17:45.514Z Has data issue: false hasContentIssue false

A CONTINUUM OF C*-NORMS ON ${\mathbb B}$(H) ⊗ ${\mathbb B}$(H) AND RELATED TENSOR PRODUCTS

Published online by Cambridge University Press:  22 July 2015

NARUTAKA OZAWA
Affiliation:
RIMS, Kyoto University, 606-8502, Japan e-mail: narutaka@kurims.kyoto-u.ac.jp
GILLES PISIER
Affiliation:
Texas A&M University, College Station, TX 77843, USA and Université Paris VI, IMJ, Equipe d'Analyse Fonctionnelle, Paris 75252, France e-mail: pisier@math.tamu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For any pair M, N of von Neumann algebras such that the algebraic tensor product MN admits more than one C*-norm, the cardinal of the set of C*-norms is at least 20. Moreover, there is a family with cardinality 20 of injective tensor product functors for C*-algebras in Kirchberg's sense. Let ${\mathbb B}$=∏nMn. We also show that, for any non-nuclear von Neumann algebra M${\mathbb B}$(ℓ2), the set of C*-norms on ${\mathbb B}$M has cardinality equal to 220.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2015 

References

REFERENCES

1.Anderson, J., Extreme points in sets of positive linear maps in $\mathcal {B(H)}$, J. Funct. Anal. 31 (1979), 195217.Google Scholar
2.Bożejko, M., Some aspects of harmonic analysis on free groups, Colloq. Math. 41 (1979), 265271.CrossRefGoogle Scholar
3.Brown, N. P. and Ozawa, N., C*-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88 (American Mathematical Society, Providence, RI, 2008).Google Scholar
4.Cohn, P. M., Basic algebra (Springer, New York, Heidelberg, 2003).Google Scholar
5.Comfort, W. W. and Negrepontis, S., The theory of ultrafilters (Springer, New York, Heidelberg, 1974).CrossRefGoogle Scholar
6.Haagerup, U. and Thorbjoernsen, S., Random matrices and K-theory for exact C*-algebras, Doc. Math. 4 (1999), 341450 (electronic).CrossRefGoogle Scholar
7.Junge, M. and Pisier, G., Bilinear forms on exact operator spaces and B(H) ⊗ B(H), Geom. Funct. Anal. 5 (1995), 329363.CrossRefGoogle Scholar
8.Kirchberg, E., The Fubini theorem for exact C*-algebras. J. Operator Theory 10 (1983), 38.Google Scholar
9.Kirchberg, E., On nonsemisplit extensions, tensor products and exactness of group C*-algebras, Invent. Math. 112 (1993), 449489.CrossRefGoogle Scholar
10.Kirchberg, E., Exact C*-algebras, tensor products, and the classification of purely infinite algebras, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) (Birkhäuser, Basel, 1995), 943954.CrossRefGoogle Scholar
11.Pisier, G., Introduction to operator space theory (Cambridge University Press, Cambridge, 2003).Google Scholar
12.Pisier, G., Remarks on B(H) ⊗ B(H), Proc. Indian Acad. Sci. (Math. Sci.) 116 (2006), 423428.Google Scholar
13.Pisier, G., Quantum expanders and geometry of operator spaces, J. Europ. Math. Soc. 16 (2014), 11831219.Google Scholar
14.Pytlik, T. and Szwarc, R., An analytic family of uniformly bounded representations of free groups, Acta Math. 157 (1986), 287309.CrossRefGoogle Scholar
15.Szwarc, R., An analytic series of irreducible representations of the free group, Ann. de l'institut Fourier 38 (1988), 87110.Google Scholar
16.Takesaki, M., Theory of operator algebras, vol. III (Springer-Verlag, Berlin, Heidelberg, New York, 2003).Google Scholar
17.Voiculescu, D., Property T and approximation of operators, Bull. London Math. Soc. 22 (1990), 2530.CrossRefGoogle Scholar
18.Voiculescu, D., Dykema, K. and Nica, A., Free random variables (American Mathematical Society, Providence, RI, 1992).Google Scholar
19.Wassermann, S., On tensor products of certain group C*-algebras, J. Funct. Anal. 23 (1976), 239254.Google Scholar