Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T19:17:03.278Z Has data issue: false hasContentIssue false

A rapid and scalable method for making mixed metal oxide alloys for enabling accelerated materials discovery

Published online by Cambridge University Press:  28 March 2016

Babajide Patrick Ajayi
Affiliation:
Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292, USA; and Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, USA
Sudesh Kumari
Affiliation:
Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, USA
Daniel Jaramillo-Cabanzo
Affiliation:
Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292, USA; and Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, USA
Joshua Spurgeon
Affiliation:
Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, USA
Jacek Jasinski
Affiliation:
Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, USA
Mahendra Sunkara*
Affiliation:
Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292, USA; and Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, USA
*
a) Address all correspondence to this author. e-mail: mahendra@louisville.edu
Get access

Abstract

The synthesis technique that can be used to accelerate the discovery of materials for various energy conversion and storage applications is presented. Specifically, this technique allows a rapid and controlled synthesis of mixed metal oxide particles using plasma oxidation of liquid droplets containing mixed metal precursors. The conventional wet chemical methods for synthesis of multimetal oxide solid solutions often require time-consuming high pressure and temperature processes, and so the challenge is to develop rapid and scalable techniques with precise compositional control. The concept is demonstrated by synthesizing binary and ternary transition metal oxide solid solutions with control over entire composition range using metal precursor solution droplets oxidized using atmospheric oxygen plasma. The results show the selective formation of metastable spinel and the rocksalt solid solution phases with compositions over the entire range by tuning the metal precursor composition. The synthesized manganese doped nickel ferrite nanoparticles, NiMn z Fe2−z O4 (0 ≤ z ≤ 1), exhibits considerable electrocatalytic activity toward oxygen evolution reaction, achieving an overpotential of 0.39 V at a benchmarking current density of 10 mA/cm2 for a low manganese content of z = 0.20.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yang, P. and Tarascon, J-M.: Towards systems materials engineering. Nat. Mater. 11, 560563 (2012).CrossRefGoogle ScholarPubMed
Lewis, N.S. and Nocera, D.G.: Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A. 103, 1572915735 (2006). doi: 10.1073/pnas.0603395103.Google Scholar
Cheng, F., Shen, J., Peng, B., Pan, Y., Tao, Z., and Chen, J.: Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 3, 7984 (2011). (http://www.nature.com/nchem/journal/v3/n1/abs/nchem.931.html#supplementary-information).CrossRefGoogle ScholarPubMed
Yandulov, D.V. and Schrock, R.R.: Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301, 7678 (2003). doi: 10.1126/science.1085326.Google Scholar
Armijo, J.: The kinetics and mechanism of solid-state spinel formation—A review and critique. Oxid. Met. 1, 171198 (1969).Google Scholar
Stein, A., Keller, S.W., and Mallouk, T.E.: Turning down the heat: Design and mechanism in solid-state synthesis. Science 259, 15581564 (1993).Google Scholar
Banger, K.K., Yamashita, Y., Mori, K., Peterson, R.L., Leedham, T., Rickard, J., and Sirringhaus, H.: Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nat. Mater. 10, 4550 (2011). (http://www.nature.com/nmat/journal/v10/n1/abs/nmat2914.html#supplementary-information).Google Scholar
Rojas, R.M., Vila, E., García, O., and de Vidales, J.L.M.: Thermal behaviour and reactivity of manganese cobaltites MnxCo3−xO4(0.0≤ x ≤ 1.0) obtained at low temperature. J. Mater. Chem. 4, 16351639 (1994).Google Scholar
Matsushita, Y., Ueda, H., and Ueda, Y.: Flux crystal growth and thermal stabilities of LiV2O4 . Nat. Mater. 4, 845850 (2005).Google Scholar
Seley, D., Ayers, K., and Parkinson, B.: Combinatorial search for improved metal oxide oxygen evolution electrocatalysts in acidic electrolytes. ACS Comb. Sci. 15, 8289 (2013).Google Scholar
Bau, J.A., Li, P., Marenco, A.J., Trudel, S., Olsen, B.C., Luber, E.J., and Buriak, J.M.: Nickel/iron oxide nanocrystals with a nonequilibrium phase: Controlling size, shape, and composition. Chem. Mater. 26, 47964804 (2014). doi: 10.1021/cm501881a.Google Scholar
Pratsinis, S.E.: Flame aerosol synthesis of ceramic powders. Prog. Energy Combust. Sci. 24, 197219 (1998). doi: 10.1016/S0360-1285(97)00028-2.Google Scholar
Messing, G.L., Zhang, S.C., and Jayanthi, G.V.: Ceramic powder synthesis by spray pyrolysis. J. Am. Ceram. Soc. 76, 27072726 (1993).Google Scholar
Lewis, D.J.: Technique for producing mullite and other mixed-oxide systems. J. Am. Ceram. Soc. 74, 24102413 (1991).Google Scholar
Marshall, B., Telford, I., and Wood, R.: A field method for the determination of zinc oxide fume in air. Analyst 96, 569578 (1971).CrossRefGoogle ScholarPubMed
Mueller, R., Jossen, R., Pratsinis, S.E., Watson, M., and Akhtar, M.K.: Zirconia nanoparticles made in spray flames at high production rates. J. Am. Ceram. Soc. 87, 197202 (2004).Google Scholar
Katz, J.E., Gingrich, T.R., Santori, E.A., and Lewis, N.S.: Combinatorial synthesis and high-throughput photopotential and photocurrent screening of mixed-metal oxides for photoelectrochemical water splitting. Energy Environ. Sci. 2, 103112 (2009). doi: 10.1039/B812177J.Google Scholar
Kumar, V., Kim, J.H., Pendyala, C., Chernomordik, B., and Sunkara, M.K.: Gas-phase, bulk production of metal oxide nanowires and nanoparticles using a microwave plasma jet reactor. J. Phys. Chem. C 112, 1775017754 (2008). doi: 10.1021/jp8078315.Google Scholar
Hasegawa, M., Kato, Y., Kagawa, M., and Syono, Y.: Effect of additive oxides on ultrafine CeO2 particles synthesized by the spray-ICP technique. J. Mater. Sci. Lett. 15, 16081611 (1996).CrossRefGoogle Scholar
Suzuki, M., Kagawa, M., Syono, Y., and Hirai, T.: Synthesis of ultrafine single-component oxide particles by the spray-ICP technique. J. Mater. Sci. 27, 679684 (1992).CrossRefGoogle Scholar
Schaefer, M., Kumar, A., Mohan Sankaran, R., and Schlaf, R.: Synthesis and in vacuo deposition of iron oxide nanoparticles by microplasma-assisted decomposition of ferrocene. J. Appl. Phys. 116, 133703 (2014). doi: 10.1063/1.4897165.Google Scholar
Marr, M., Kuhn, J., Metcalfe, C., Harris, J., and Kesler, O.: Electrochemical performance of solid oxide fuel cells having electrolytes made by suspension and solution precursor plasma spraying. J. Power Sources 245, 398405 (2014).CrossRefGoogle Scholar
Chang, S.M., Tolava, R., Erwin, F., Yang, Y.J., Li, H.C., Lee, R.C., Wu, N.L., and Hsu, C.C.: One-step fast synthesis of Li4Ti5O12 particles using an atmospheric pressure plasma jet. J. Am. Ceram. Soc. 97, 708712 (2014).Google Scholar
Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S., and Nocera, D.G.: Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 64746502 (2010). doi: 10.1021/cr100246c.Google Scholar
Suntivich, J., May, K.J., Gasteiger, H.A., Goodenough, J.B., and Shao-Horn, Y.: A Perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 13831385 (2011). doi: 10.1126/science.1212858.Google Scholar
Gerken, J.B., Chen, J.Y.C., Massé, R.C., Powell, A.B., and Stahl, S.S.: Development of an O2-sensitive fluorescence-quenching assay for the combinatorial discovery of electrocatalysts for water oxidation. Angew. Chem., Int. Ed. 51, 66766680 (2012). doi: 10.1002/anie.201201999.Google Scholar
Xiang, C., Suram, S.K., Haber, J.A., Guevarra, D.W., Soedarmadji, E., Jin, J., and Gregoire, J.M.: High-throughput bubble screening method for combinatorial discovery of electrocatalysts for water splitting. ACS Comb. Sci. 16, 4752 (2014). doi: 10.1021/co400151h.Google Scholar
Burns, R.G.: The uptake of cobalt into ferromanganese nodules, soils, and synthetic manganese (IV) oxides. Geochim. Cosmochim. Acta 40, 95102 (1976). doi: 10.1016/0016-7037(76)90197-6.Google Scholar
Ko, S.W., Li, J., Podraza, N.J., Dickey, E.C., and Trolier-McKinstry, S.: Spin spray-deposited nickel manganite thermistor films for microbolometer applications. J. Am. Ceram. Soc. 94, 516523 (2011). doi: 10.1111/j.1551-2916.2010.04097.x.CrossRefGoogle Scholar
Noh, H-J., Yeo, S., Kang, J-S., Zhang, C.L., Cheong, S-W., Oh, S-J., and Johnson, P.D.: Jahn-Teller effect in spinel manganites probed by soft x-ray absorption spectroscopy. Appl. Phys. Lett. 88, 081911 (2006). doi: 10.1063/1.2178474.Google Scholar
Miyahara, S.: Jahn-Teller distortion in magnetic spinels. J. Phys. Soc. Jpn. 17, 181184 (1962).Google Scholar
de Györgyfalva, G. and Reaney, I.: Decomposition of NiMn2O4 spinels. J. Mater. Res. 18, 13011308 (2003).Google Scholar
Díez, A., Schmidt, R., Sagua, A.E., Frechero, M.A., Matesanz, E., Leon, C., and Morán, E.: Structure and physical properties of nickel manganite NiMn2O4 obtained from nickel permanganate precursor. J. Eur. Ceram. Soc. 30, 26172624 (2010). doi: 10.1016/j.jeurceramsoc.2010.04.032.Google Scholar
Xiao-Xia, T., Manthiram, A., and Goodenough, J.B.: NiMn2O4 revisited. J. Less-Common Met. 156, 357368 (1989). doi: 10.1016/0022-5088(89)90431-1.Google Scholar
Weil, L., Bertaut, F., and Bochirol, L.: Propriétés magnétiques et structure de la phase quadratique du ferrite de cuivre. J. Phys. Radium 11, 208212 (1950). doi: 10.1051/jphysrad:01950001105020800.Google Scholar
Birajdar, A.A., Shirsath, S.E., Kadam, R.H., Patange, S.M., Mane, D.R., and Shitre, A.R.: Rietveld structure refinement and cation distribution of Cr. ISRN Ceram. 2012, 5 (2012). doi: 10.5402/2012/876123.Google Scholar
Chekin, F., Tahermansouri, H., and Besharat, M.: Nickel oxide nanoparticles prepared by gelatin and their application toward the oxygen evolution reaction. J. Solid State Electrochem. 18, 747753 (2014). doi: 10.1007/s10008-013-2313-y.Google Scholar
Yeager, M.P., Su, D., Marinković, N.S., and Teng, X.: Pseudocapacitive NiO fine nanoparticles for supercapacitor reactions. J. Electrochem. Soc. 159, A1598A1603 (2012). doi: 10.1149/2.025210jes.Google Scholar
Trotochaud, L., Ranney, J.K., Williams, K.N., and Boettcher, S.W.: Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 1725317261 (2012). doi: 10.1021/ja307507a.Google Scholar
Bao, J., Zhang, X., Fan, B., Zhang, J., Zhou, M., Yang, W., Hu, X., Wang, H., Pan, B., and Xie, Y.: Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 127, 75077512 (2015). doi: 10.1002/anie.201502226.Google Scholar
Singh, R.N., Singh, J.P., Nguyen Cong, H., and Chartier, P.: Effect of partial substitution of Cr on electrocatalytic properties of towards -evolution in alkaline medium. Int. J. Hydrogen Energy 31, 13721378 (2006). doi: 10.1016/j.ijhydene.2005.11.012.Google Scholar
Singh, R.N., Singh, J.P., Lal, B., Thomas, M.J.K., and Bera, S.: New NiFe2−xCrxO4 spinel films for O2 evolution in alkaline solutions. Electrochim. Acta 51, 55155523 (2006). doi: 10.1016/j.electacta.2006.02.028.Google Scholar
Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., Liu, Z., Kaya, S., Nordlund, D., Ogasawara, H., Toney, M.F., and Nilsson, A.: Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454460 (2010). (http://www.nature.com/nchem/journal/v2/n6/suppinfo/nchem.623_S1.html).Google Scholar
Jakšić, M.M.: Electrocatalysis of hydrogen evolution in the light of the Brewer—Engel theory for bonding in metals and intermetallic phases. Electrochim. Acta 29, 15391550 (1984). doi: 10.1016/0013-4686(84)85007-0.Google Scholar
Brinley, E., Babu, K.S., and Seal, S.: The solution precursor plasma spray processing of nanomaterials. JOM 59, 5459 (2007). doi: 10.1007/s11837-007-0090-8.Google Scholar