Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T12:16:03.096Z Has data issue: false hasContentIssue false

Globally disruptive events show predictable timing patterns

Published online by Cambridge University Press:  17 March 2016

Michael P. Gillman*
Affiliation:
Evolution and Ecology Research Group, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
Hilary E. Erenler
Affiliation:
Landscape and Biodiversity Research Group, School of Science and Technology, University of Northampton, Newton Building, Northampton, NN2 6JD, UK

Abstract

Globally disruptive events include asteroid/comet impacts, large igneous provinces and glaciations, all of which have been considered as contributors to mass extinctions. Understanding the overall relationship between the timings of the largest extinctions and their potential proximal causes remains one of science's great unsolved mysteries. Cycles of about 60 Myr in both fossil diversity and environmental data suggest external drivers such as the passage of the Solar System through the galactic plane. While cyclic phenomena are recognized statistically, a lack of coherent mechanisms and a failure to link key events has hampered wider acceptance of multi-million year periodicity and its relevance to earth science and evolution. The generation of a robust predictive model of timings, with a clear plausible primary mechanism, would signal a paradigm shift. Here, we present a model of the timings of globally disruptive events and a possible explanation of their ultimate cause. The proposed model is a symmetrical pattern of 63 Myr sequences around a central value, interpreted as the occurrence of events along, and parallel to, the galactic midplane. The symmetry is consistent with multiple dark matter disks, aligned parallel to the midplane. One implication of the precise pattern of timings and the underlying physical model is the ability to predict future events, such as a major extinction in 1–2 Myr.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amelin, Y. & Ireland, T.R. (2013). Dating the oldest rocks and minerals in the Solar System. Elements 9, 3944.CrossRefGoogle Scholar
Bollard, J., Connelly, J.N. & Bizzarro, M. (2015). Pb–Pb dating of individual chondrules from the CBa chondrite Gujba: assessment of the impact plume formation model. Meteorit. Planet. Sci. 50, 11971216.CrossRefGoogle ScholarPubMed
Cohen, K.M., Finney, S.C., Gibbard, P.L. & Fan, J.-X. (2013). updated. The ICS International Chronostratigraphic Chart. Episodes 36, 199204. (Version 2015/1).CrossRefGoogle Scholar
Connelly, J.N. et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651655.CrossRefGoogle ScholarPubMed
Courtillot, V. & Olson, P. (2007). Mantle plumes link magnetic superchrons to Phanerozoic mass depletion events. Earth Planet. Sci. Lett. 260, 495504.CrossRefGoogle Scholar
Dahl, T.W. et al. (2014). Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event. Earth Planet. Sci. Lett. 401, 313326.CrossRefGoogle ScholarPubMed
De Vleeschouwer, D., Parnell, A.C. (2014). Reducing time-scale uncertainty for the Devonian by integrating astrochronology and Bayesian statistics. Geology 42, 491494.CrossRefGoogle Scholar
Elrick, M. et al. (2009). Stratigraphic and oxygen isotope evidence for My-scale glaciation driving eustasy in the early-middle devonian greenhouse world. Palaeogeogr. Palaeoclimatol. Palaeoecol. 276, 170181.CrossRefGoogle Scholar
Fan, J., Katz, A., Randall, L. & Reece, M. (2013a). Double-disk dark matter. Phys. Dark Univ. 2, 139156.CrossRefGoogle Scholar
Fan, J., Katz, A., Randall, L. & Reece, M. (2013b). Dark-disk universe. Phys. Rev. Lett. 110, 211302.CrossRefGoogle ScholarPubMed
Follmi, K.B. (2012). Early cretaceous life, climate and anoxia. Cretaceous Res. 35, 230257.CrossRefGoogle Scholar
Foot, R. & Vagnozzi, S. (2015a). Dissipative hidden sector dark matter. Phys. Rev. D 91, 023512.CrossRefGoogle Scholar
Foot, R. & Vagnozzi, S. (2015b). Diurnal modulation signal from dissipative hidden sector dark matter. Phys. Lett. B 748, 6166.CrossRefGoogle Scholar
Gies, D.R. & Helsel, J.W. (2005). Ice age epochs and the Sun's path through the Galaxy. Astrophys. J. 626, 844848.CrossRefGoogle Scholar
Harvey, D., Massey, R., Kitching, T., Taylor, A. & Tittley, E. (2015). The nongravitational interactions of dark matter in colliding galaxy clusters. Science 347, 14621465.CrossRefGoogle ScholarPubMed
Holbourn, A., Kuhnt, W., Frank, M. & Haley, B.A. (2013). Changes in Pacific Ocean circulation following the Miocene onset of permanent Antarctic ice cover. Earth Planet. Sci. Lett. 365, 3850.CrossRefGoogle Scholar
Ikeda, M. & Tada, R. (2014). A 70 million year astronomical timescale for the deep-sea bedded chert sequence (Inuyama, Japan): implications for Triassic–Jurassic geochronology. Earth Planet. Sci. Lett. 399, 3043.CrossRefGoogle Scholar
Joshi, Y.C. (2007). Displacement of the Sun from the Galactic plane. Mon. Not. R.. Astron. Soc. 378, 768776.CrossRefGoogle Scholar
Lukeneder, A. (2012). New biostratigraphic data on an upper Hauterivian-upper Barremian ammonite assemblage from the dolomites (Southern Alps, Italy). Cretaceous Res. 35, 121.Google Scholar
Lund, U. & Agostinelli, C. (2012). S-plus original by Ulric Lund and R port by Claudio Agostinelli. CircStats: Circular Statistics, from “Topics in Circular Statistics” (2001). R package version 0.2–4. http://CRAN.Rproject.org/package=CircStats Google Scholar
McGhee, G.R., Clapham, M.E., Sheehan, P.M., Bottjer, D.J. & Droser, M.L. (2013). A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeogr. Palaeoclimatol. Palaeoecol. 370, 260270.CrossRefGoogle Scholar
Medvedev, M.V. & Melott, A.L. (2007). Do extragalactic cosmic rays induce cycles in fossil diversity? Astrophys. J. 664, 879889.CrossRefGoogle Scholar
Melchin, M.J., Mitchell, C.E., Holmden, C. & Storch, P. (2013). Environmental changes in the late ordovician-early silurian: review and new insights from black shales and nitrogen isotopes. Geol. Soc. Am. Bull. 125, 16351670.CrossRefGoogle Scholar
Melott, A.L. (2008). Long-term cycles in the history of life: periodic biodiversity in the paleobiology database. Plos ONE 3, e4044.CrossRefGoogle ScholarPubMed
Melott, A.L. & Bambach, R.K. (2014). Analysis of periodicity of extinction using the 2012 geological timescale. Paleobiology 40, 177196.CrossRefGoogle Scholar
Melott, A.L., Bambach, R.K., Petersen, K.D. & McArthur, J.M. (2012). An ~60-Million-Year periodicity is common to marine 87Sr/86Sr, fossil biodiversity, and large-scale sedimentation: what does the periodicity reflect? J. Geol. 120, 217226.CrossRefGoogle Scholar
Petrick, B. et al. (2015). Late Pliocene upwelling in the Southern Benguela region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 429, 6271.CrossRefGoogle Scholar
Prokoph, A., El Bilali, H. & Ernst, R. (2013). Periodicities in the emplacement of large igneous provinces through the Phanerozoic: relations to ocean chemistry and marine biodiversity evolution. Geosci. Front. 4, 263276.CrossRefGoogle Scholar
R Core Team (2015). R: A language and environment for statistical computing (Vienna, Austria: the R Foundation for Statistical Computing). http://www.R-project.org/ Google Scholar
Rampino, M.R. (2015). Disc dark matter in the Galaxy and potential cycles of extraterrestrial impacts, mass extinctions and geological events. Mon. Not. R. Astron. Soc. 448, 18161820.CrossRefGoogle Scholar
Rampino, M.R. & Caldeira, K. (2015). Periodic impact cratering and extinction events over the last 260 million years. Mon. Not. R. Astron. Soc. 454, 34803484.CrossRefGoogle Scholar
Rampino, M.R. & Prokoph, A. (2013). Are mantle plumes periodic? Eos 94, 113114.CrossRefGoogle Scholar
Rampino, M.R. & Stothers, R.B. (1984). Terrestrial mass extinctions, cometary impacts and the Sun's motion perpendicular to the galactic plane. Nature 308, 709712.CrossRefGoogle Scholar
Randall, L. & Reece, M. (2014). Dark matter as a trigger for periodic comet impacts. Phys. Rev. Lett. 112, 161301.CrossRefGoogle ScholarPubMed
Raup, D.M. & Sepkoski, J.J. (1984). Periodicity of extinctions in the geologic past. Proc. Natl. Acad. Sci. USA 81, 801805.CrossRefGoogle ScholarPubMed
Renne, P.R. et al. (2013). Time scales of critical events around the cretaceous-paleogene boundary. Science 339, 684687.CrossRefGoogle ScholarPubMed
Rohde, R.A. & Muller, R.A. (2005). Cycles in fossil diversity. Nature 434, 208210.CrossRefGoogle ScholarPubMed
Sell, B. et al. (2014). Evaluating the temporal link between the Karoo LIP and climatic-biologic events of the Toarcian Stage with high-precision U-Pb geochronology. Earth Planet. Sci. Lett. 408, 4856.CrossRefGoogle Scholar
Shaviv, N.J., Prokoph, A. & Veizer, J. (2014). Is the solar system's galactic motion imprinted in the Phanerozoic climate? Sci. Rep. 4, 6150.CrossRefGoogle ScholarPubMed
Sokal, R.R. & Rohlf, F.J. (1981). Biometry, 2nd Edn, Freeman, New York.Google Scholar
Thomas, B.C. (2009). Gamma-ray bursts as a threat to life on Earth. Int. J. Astrobiol. 8, 183186.CrossRefGoogle Scholar
Wendler, J. (2004). External forcing of the geomagnetic field? Implications for the cosmic ray flux-climate variability. J. Atmos. Sol.-Terr. Phys. 66, 11951203.CrossRefGoogle Scholar
Wotzlaw, J.-F. et al. (2014). Towards accurate numerical calibration of the Late Triassic: high-precision U-Pb geochronology constraints on the duration of the Rhaetian. Geology 42, 571574.CrossRefGoogle Scholar
Yamaguchi, T. & Norris, R.D. (2015). No place to retreat: heavy extinction and delayed recovery on a Pacific guyot during the Paleocene-Eocene Thermal Maximum. Geology 43, 443446.CrossRefGoogle Scholar
Supplementary material: File

Gillman and Erenler supplementary material

Tables S1-S2

Download Gillman and Erenler supplementary material(File)
File 41.8 KB