Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T15:11:06.469Z Has data issue: false hasContentIssue false

Nutritional requirements and feed management of meat type ducks

Published online by Cambridge University Press:  13 January 2016

E. BAÉZA*
Affiliation:
INRA, UR 83 Recherches Avicoles, F-37380 Nouzilly, France
*
Corresponding author: baeza@tours.inra.fr
Get access

Abstract

This review discusses the different duck species and their feeding management used in meat production in various countries. The initial review describes the requirements of meat type ducks for energy, proteins and amino acids and minerals, vitamins and trace-elements. Other areas discussed include recommendations regarding feed management (feed presentation, feed restriction, use of enzymes and feedstuffs, fatty acid composition of diets). The main breeds used for meat production in the world are Pekin, Muscovy and mule ducks. As growth rate, efficiency and body composition of these three genotypes are different, the specific features of each type of duck are examined when reared under intensive production systems.

Type
Reviews
Copyright
Copyright © World's Poultry Science Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ADEOLA, O. (2006) Review of research in duck nutrient utilization. International Journal of Poultry Science 5 (3): 201-218.Google Scholar
ATTIA, Y.A., EL-DEEK, A.A. and OSMAN, M. (1998) Evaluation of sunflower meal as a feedstuff in diets for ducks. Archiv für Geflügelkunde 62 (6): 273-282.Google Scholar
ATTIA, Y.A., QOTA, E.M., ZEWEIL, H.S., BOVERA, F., ABD AL-HAMID, A.E. and SAHLEDOM, M.D. (2012) Effect of different dietary concentrations of inorganic and organic copper on growth performance and lipid metabolism of white Pekin male ducks. British Poultry Science 53 (1): 77-88.CrossRefGoogle Scholar
ATTIA, Y.A., ABD AL-HAMID, A.E., ZEWEIL, H.S., QOTA, E.M., BOVERA, F., MONASTRA, G. and SAHLEDOM, M.D. (2013) Effect of dietary amounts of inorganic and organic zinc on productive and physiological traits of white Pekin ducks. Animal 7 (6): 895-900.CrossRefGoogle Scholar
BAÉZA, E. (2000) Carcasses et viandes de canards: des facteurs de variation de mieux en mieux connus. Viandes et Produits Carnés 21 (5): 159-167.Google Scholar
BAÉZA, E. and LECLERCQ, B. (1998) Use of industrial amino acids to allow low protein concentrations in finishing diets for growing Muscovy ducks. British Poultry Science 39: 90-96.CrossRefGoogle ScholarPubMed
BAÉZA, E., UZU, G. and PREYNAT, A. (2010) Enzyme complex containing NSP-enzymes and phytase improves the growth performance and bone mineralisation of Muscovy duck fed with wheat and barley-based diet. Proceedings of the 13th WPSA European Poultry Conference, 23-27/08/10, Tours (France): 4 p.Google Scholar
BAÉZA, E., BERNADET, M.D. and LESSIRE, M. (2012) Protein requirements for growth, feed efficiency and meat production in growing mule ducks. Journal of Applied Poultry Research 21: 21-32.CrossRefGoogle Scholar
BAKER, D.H. and HAN, Y. (1994) Ideal amino acid profile for chicks during the first three weeks post-hatching. Poultry Science 73: 1441-1447.CrossRefGoogle Scholar
BERNADET, M.D., NYS, Y. and GUY, G. (2002a) Détermination du besoin en phosphore chez le canard mulard mâle durant la phase de démarrage (1 à 28 jours). Proceedings of 5èmes Journées de la Recherche sur les Palmipèdes à Foie Gras, 9-10/10/02, Arcachon (France): 228-231.Google Scholar
BERNADET, M.D., NYS, Y. and GUY, G. (2002b) Détermination du besoin en phosphore chez le canard mulard mâle durant la phase de croissance et finition. Proceedings of 5èmes Journées de la Recherche sur les Palmipèdes à Foie Gras, 9-10/10/02, Arcachon (France), 224-227.Google Scholar
BERNADET, M.D., NYS, Y. and GUY, G. (2004) Effet de l'incorporation de phytases dans l'alimentation des canards mulards mâles sur les rejets phosphorés. Proceedings of 7èmes Journées de la Recherche sur les Palmipèdes à Foie Gras, 7-8/10/04, Arcachon (France): 241-244.Google Scholar
BERNADET, M.D. and LESSIRE, M. (2010) Définition du taux optimal d'incorporation de tourteau de colza dans la ration alimentaire des canards mulards mâles en phase de croissance et finition. Proceedings of 9èmes Journées de la Recherche sur les Palmipèdes à Foie Gras, 7-8/10/10, Bordeaux (France): 55-59.Google Scholar
BONS, A., TIMMLER, R. and JEROCH, H. (2002) Lysine requirement of growing male Pekin ducks. British Poultry Science 43 (5): 677-686.CrossRefGoogle Scholar
BERRI, C., BESNARD, J. and RELANDEAU, C. (2008) Increasing dietary lysine increases final pH and decreases drip los of broiler breast meat. Poultry Science 87: 480-484.CrossRefGoogle Scholar
CHEN, B. and SHEN, T. (1979) Studies on duck nutrition.3. Arginine and lysine requirements of mule ducklings. Poultry Science 58: 1316-1320.CrossRefGoogle Scholar
CRESWELL, D. (2012) Feeding meat and laying ducks for maximum performance. Proceedings of Poultry Feed Conference, 9-10/07/12, Bangkok (Thailand): p. 46Google Scholar
DEAN, W.F. (1972) Recent findings in duck nutrition. Proceedings of Cornell Nutrition Conference, Ithaca, N.Y., Cornell University: 77-85.Google Scholar
DEMAN, C. (2014) Le point sur le marché du canard en 2012-2013. TeMA 31: 34-39.Google Scholar
EL-DEEK, A.A., BARAKAT, M.O., ATTIA, Y.A. and EL-SEBEAY, A.S. (1997) Effect of feeding Muscovy ducklings different protein sources: performance, ω-3 fatty acid contents and acceptability of their tissues. Journal of American Oil Chemists’ Society 74 (8): 999-1009.CrossRefGoogle Scholar
EL-DEEK, A.A. and BRIKAA, A.M. (2009) Effect of different levels of seaweed in starter and finisher diets in pellet and mash form on performance and carcass quality of ducks. International Journal of Poultry Science 8 (10): 1014-1021.CrossRefGoogle Scholar
ELKIN, R.G., STEWART, T.S. and ROGLER, J.C. (1986) Methionine requirement of male white Pekin ducklings. Poultry Science 65: 1771-1776.CrossRefGoogle ScholarPubMed
ELKIN, R.G. (1987) A review of duck nutrition research. World's Poultry Science Journal 43 (2): 84-106.CrossRefGoogle Scholar
FAN, H.P., XIE, M., WANG, W.W., HOU, S.S. and HUANG, W. (2008) Effects of dietary energy on growth performance and carcass quality of white growing Pekin ducks from two to six weeks of age. Poultry Science 87: 1162-1164.CrossRefGoogle ScholarPubMed
FAO STATISTICS (2014) faosta3.fao.org.Google Scholar
GRIMAUD FRERES COMPANY (2015a) Guide d’élevage du canard Pékin à rôtir. Grimaud Frères Sélection (Ed.), 1-19, Roussay (France).Google Scholar
GRIMAUD FRERES COMPANY (2015b) Guide d’élevage des canedins à rôtir. Grimaud Frères Sélection (Ed.), 1-25, Roussay (France).Google Scholar
GUO, X.Y., FANG, Y.J. and WU, L.Y. (2013) Early diet dilution with 40% rice hull induces lower body fat and lipid metabolic programming in Peking ducks. Korean Journal of Food Science and Animal Resources 33 (3): 341-347.CrossRefGoogle Scholar
HALLE, I., HENNING, M. and KÖHLER, P. (2011) Influence of vitamin B12 and cobalt on growth of broiler chickens and Pekin ducks. Landbauforshung 64 (4): 299-306.Google Scholar
HELMBRECHT, A. (2012) Amino acid nutrition in ducks. Proceedings of 24th World's Poultry Congress, 5-9/08/12, Salvador, Bahia (Brazil): p. 7.Google Scholar
HOAI, H.T., KINH, L.V., VIET, T.Q., SY, P.V., HOP, N.V., OANH, D.K. and YEN, N.T. (2011) Determination of the metabolisable energy content of common feedstuffs in meat-type growing ducks. Animal Feed Science Technology 170: 126-129.CrossRefGoogle Scholar
HONG, D., RAGLAND, D. and ADEOLA, O. (2001) Additivity and associative effects of metabolisable and amino acid digestibilities in barley and canola meal for white Pekin ducks. Poultry Science 80: 1600-1606.CrossRefGoogle Scholar
HONG, D., RAGLAND, D. and ADEOLA, O. (2002a) Additivity and associative effects of metabolisable and amino acid digestibilities in corn, soybean meal and wheat red dog for white Pekin ducks. Journal of Animal Science 80: 3222-3229.CrossRefGoogle Scholar
HONG, D., BURROWS, H. and ADEOLA, O. (2002b) Addition of enzyme to starter and grower diets for ducks. Poultry Science 8: 1842-1849.CrossRefGoogle Scholar
INRA (1989) Alimentation des canards, in: INRA (Ed.) L'alimentation des animaux monogastriques: porc, lapin, volailles, pp. 123-131 (Paris, France).Google Scholar
IMANARI, M., KADOWAKI, M. and FUJIMURA, S. (2008) Regulation of taste-active components of meat by dietary branched-chain amino acids; effects of branched-chain amino acid antagonism. British Poultry Science 49 (3): 299-307.CrossRefGoogle Scholar
JIANG, J.F., SONG, X.M., HUANG, X., WU, J.L., ZHOU, W.D., ZHENG, H.C. and JIANG, Y.Q. (2012) Effects of alfalfa meal on carcase quality and fat metabolism of Muscovy ducks. British Poultry Science 53 (5): 681-688.CrossRefGoogle Scholar
KOWALCZYK, A., LUKASZEWICZ, E., ADAMSKI, M. and KUZNIACKA, J. (2012) Carcass composition and meat characteristics of Pekin ducks in relation to age at slaughter and level of maize distiller's dried grains with solubles in diets. Journal of Animal Feed Science 21: 156-167.CrossRefGoogle Scholar
LECLERCQ, B. (1990) Alimentation du canard de Barbarie en croissance, in: SAUVEUR, B. & DE CARVILLE, H. (Eds) Le canard de Barbarie, pp. 41-52 (INRA, Paris, France)Google Scholar
LECLERCQ, B. (1998) Le besoin en thréonine des volailles de chair. INRA Productions Animales 11 (4): 263-272.CrossRefGoogle Scholar
LECLERCQ, B. and DE CARVILLE, H. (1977) On the sulphur amino acid requirement of Muscovy ducklings. Archiv für Geflügelkunde 41: 270-272.Google Scholar
LECLERCQ, B. and DE CARVILLE, H. (1978) Intérêt du rationnement du caneton mâle de Barbarie entre les âges de 8 et 12 semaines. Annales de Zootechnie 27 (1): 1-7.CrossRefGoogle Scholar
LECLERCQ, B. and DE CARVILLE, H. (1979) The lysine requirement of Muscovy ducklings determined with corn-sunflower meal diets. Archiv für Geflügelkunde 43: 69-72.Google Scholar
LECLERCQ, B., DE CARVILLE, H. and GUY, G. (1990) Calcium requirement of male Muscovy ducklings. British Poultry Science 31: 331-337.CrossRefGoogle Scholar
LIN, S.W. and SHEN, T.F. (1994) Phenylalanine and tyrosine requirements of mule ducklings. Journal of Agricultural Association of China 168: 135-147.Google Scholar
MACK, S., BERCOVICI, D., DE GROATE, G., LECLERCQ, B., LIPPENS, M., PACK, M., SCHUTTE, J.B. and VAN CAUWENBERGHE, S. (1999) Ideal amino acid profile and dietary lysine specification for broiler chickens of 20 to 40 days of age. British Poultry Science 40: 257-265.CrossRefGoogle ScholarPubMed
MARTIN, E.A. and FARRELL, D.J. (1998) Strategies to improve the nutritive value of rice bran in poultry diets. II. Changes in oil digestibility, metabolisable energy and attempts to increase the digestibility of the oil fraction in the diets of chickens and ducklings. British Poultry Science 39: 555-559.CrossRefGoogle ScholarPubMed
MEN, B.X., OGLE, R.B. and LINDBERG, J.E. (2002a) Studies on integrated duck-rice systems in the Mekong delta of Vietnam. Journal of Sustainable Agriculture 20 (1): 27-40.CrossRefGoogle Scholar
MEN, B.X., OGLE, R.B. and LINDBERG, J.E. (2002b) Effect of diet and management system on growing duck performance in the Mekong delta of Vietnam. Journal of Sustainable Agriculture 20 (3): 21-32.CrossRefGoogle Scholar
NRC (1994) Nutrient requirements of ducks, in, NRC (Ed.) Nutrient requirements of poultry, pp. 42-43 (National Academic Press, Washington, USA).Google Scholar
OLVER, M.D. (1997) Effect of sweet lupins on duckling growth. British Poultry Science 38: 115-117.CrossRefGoogle ScholarPubMed
OLVER, M.D. and JONKER, A. (1998) Effects of sweet, bitter and soaked micronized bitter lupins on duckling performance. British Poultry Science 39: 622-626.CrossRefGoogle ScholarPubMed
PEILLOD, C., MANCINI, V., METAYER, J.P., SKIBA, F. and LABORDE, M. (2010) Détermination du taux optimal d'incorporation de drêches de maïs dans la ration alimentaire des canards mulards mâles en phase de croissance et finition. Proceedings of 9èmes Journées de la Recherche sur les Palmipèdes à Foie Gras, 7-8/10/10, Bordeaux (France): 49-53.Google Scholar
PINGEL, H. (2004) Duck and geese production. World's Poultry 20 (8): 26-28.Google Scholar
PRINSLOO, J.F., SCHOONBEE, H.J. and THERON, J. (1999) The production of poultry in integrated-aquaculture systems. Water SA 25 (2): 221-230.Google Scholar
RODEHUTSCORD, M., TIMMLER, R. and WENDT, P. (2003) Response of growing Pekin ducks to supplementation of monobasic calcium phosphate to low-phosphorus diets. Poultry Science 82: 309-319.CrossRefGoogle ScholarPubMed
RODEHUTSCORD, M. (2006) Optimising the use of phosphorus sources in growing meat type ducks. World's Poultry Science Journal 62: 513-523.CrossRefGoogle Scholar
SCHIAVONE, A., ROMBOLI, I., CHIARINI, R. and MARZONI, M. (2004) Influence of dietary lipid source and strain on fatty acid composition of Muscovy duck meat. Journal of Animal Physiology and Animal Nutrition 88: 88-93.CrossRefGoogle ScholarPubMed
SCHIAVONE, A., CHIARINI, R., MARZONI, M., CASTILLO, A., TASSONE, S. and ROMBOLI, I. (2007) Breast meat traits of Muscovy ducks fed on a microalga (Crypthecodinium cohnii) meal supplemented diet. British Poultry Science 48 (5): 573-579.CrossRefGoogle Scholar
SCHIAVONE, A., MARZONI, M., CASTILLO, A., NERY, J. and ROMBOLI, I. (2010) Dietary lipid sources and vitamin E affect fatty acid composition or lipid stability of breast meat from Muscovy duck. Canadian Journal of Animal Science 90: 371-378.CrossRefGoogle Scholar
SCOTT, M.L. and DEAN, W.F. (1991) Nutrition and management of ducks, 177 p. (Ithaca, USA, NY).Google Scholar
SIREGAR, A.P., CUMMING, R.B. and FARRELL, D.J. (1982) The nutrition of meat-type ducks. 2. The effects of variation in the energy and protein contents of diets on biological performance and carcass characteristics. Australian Journal of Agricultural Research 33 (5): 865-875.CrossRefGoogle Scholar
SYED, R.A. (2002) Augmenting the family income through integrated fish-duck farming. World's Poultry 18 (4): 21.Google Scholar
TAN, B.J., OHTANI, S. and TANAKA, K.I. (1999) Effect of early feed restriction of varied severity on growth performance, carcass composition and lipid metabolism in female ducks. Animal Science Journal 70 (5): 297-305.Google Scholar
TANG, J., XIE, M., YANG, J., WEN, Z.G., ZHU, Y.W., HUANG, W. and HOU, S.S. (2013) Riboflavin requirements of white Pekin ducks from hatch to 21 days of age. British Poultry Science 54 (3): 407-411.Google Scholar
TIMMLER, R. and RODEHUTSCORD, M. (2001) Efficiency of different xylanase preparations in diets for Pekin ducks. Archiv of Animal Nutrition 55 (4): 315-332.Google Scholar
TIMMLER, R. and RODEHUTSCORD, M. (2003) Dose-response relationships for valine in the growing white Pekin duck. Poultry Science 82: 1755-1762.CrossRefGoogle ScholarPubMed
WAN, H.F., CHEN, W., QI, Z.L., PENG, P. and PENG, J. (2009) Prediction of true metabolisable energy from chemical composition of wheat milling by-products for ducks. Poultry Science 88: 92-97.CrossRefGoogle Scholar
WANG, C., XIE, M., HUANG, W., XIE, J.J., TANG, J. and HOU, S.S. (2013) Arginine requirements of white Pekin ducks from 1 to 21 days of age. Poultry Science 92: 1007-1010.CrossRefGoogle ScholarPubMed
WEN, Z.G., TANG, J., HOU, S.S., GUO, Y.M., HUANG, W. and XIE, M. (2014a) Choline requirements of male white Pekin ducks from hatch to 21 days of age. Poultry Science 93: 3091-3096.CrossRefGoogle ScholarPubMed
WEN, Z.G., HOU, S.S., TANG, J., FENG, Y.L., HUANG, W., GUO, Y.M. and XIE, M. (2014b) Choline requirements of male white Pekin ducks from 21 to 42 days of age. British Poultry Science 55 (4): 548-552.CrossRefGoogle Scholar
WENDT, P. and RODEHUTSCORD, M. (2004) Investigations on the availability of inorganic phosphate from different sources with growing white Pekin ducks. Poultry Science 83 (9): 1572-1579.CrossRefGoogle Scholar
WU, L.S., WU, C.L. and SHEN, T.F. (1984) Niacin and tryptophan requirements of mule ducklings fed corn and soy-based diets. Poultry Science 63: 153-158.CrossRefGoogle ScholarPubMed
WU, L.Y., FANG, Y.J. and GUO, X.Y. (2011) Dietary L-arginine supplementation beneficially regulates body fat deposition of meat-type ducks. British Poultry Science 52 (2): 221-226.CrossRefGoogle Scholar
WU, L.Y., GUO, X. and FANG, Y. (2012) Effect of diet dilution ratio at early age on growth performance, carcass characteristics and hepatic lipogenesis of Pekin ducks. Brazilian Journal of Poultry Science 14 (1): 43-49.CrossRefGoogle Scholar
XIE, M., HOU, S.S., HUANG, W., ZHAO, L., YU, J.Y., LI, W.Y. and WU, Y.Y. (2004) Interrelationship between methionine and cystine of early Peking ducklings. Poultry Science 83: 1703-1708.CrossRefGoogle ScholarPubMed
XIE, M., HOU, S.S. and HUANG, W. (2006) Methionine requirements of male white Peking ducks from 21 to 49 days of age. Poultry Science 85 (4): 743-746.CrossRefGoogle Scholar
XIE, M., GUO, Y.M., ZHANG, T., HOU, S.S. and HUANG, W. (2009) Lysine requirement of male white Pekin ducklings from 7 to 21 days of age. Asian-Australasian Journal of Animal Science 22 (10): 21386-1390.Google Scholar
XIE, M., ZHAO, J.N., HOU, S.S. and HUANG, W. (2010) The apparent metabolizable energy requirement of white Pekin ducklings from hatch to 3 weeks of age. Animal Feed Science and Technology 157: 95-98.CrossRefGoogle Scholar
YU, R.C. and SHEN, T.F. (1984) Leucine, isoleucine and valine requirements of mule ducklings. Journal of Chinese Society and Animal Science 13: 1-15.Google Scholar
ZHANG, Q., XU, L., DOSTER, A., MURDOCH, R., COTTER, P., GARDNER, A. and APPLEGATE, T.J. (2014) Dietary threonine requirement of Pekin ducks from 15 to 35 days of age based on performance, yield, serum natural antibodies and intestinal mucin secretion. Poultry Science 93: 1972-1980.CrossRefGoogle ScholarPubMed
ZHAO, F., ZHANG, H.F., HOU, S.S. and ZHANG, Z.Y. (2008) Predicting metabolizable energy of normal corn from its chemical composition in adult Pekin ducks. Poultry Science 87: 1603-1608.CrossRefGoogle ScholarPubMed