Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T11:05:00.709Z Has data issue: false hasContentIssue false

The microorganisms of cryoconite holes (algae, Archaea, bacteria, cyanobacteria, fungi, and Protista): a review

Published online by Cambridge University Press:  14 September 2015

Łukasz Kaczmarek
Affiliation:
Department of Animal Taxonomy and Ecology, Adam Mickiewicz University in Poznań, Umultowska 89, 61–614 Poznań, Poland. (kaczmar@amu.edu.pl)
Natalia Jakubowska
Affiliation:
Department of Water Protection, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61–614 Poznań, Poland.
Sofia Celewicz-Gołdyn
Affiliation:
Department of Botany, Poznań University of Life Sciences, Wojska Polskiego 71c, 60–625 Poznań, Poland
Krzysztof Zawierucha
Affiliation:
Department of Animal Taxonomy and Ecology, Adam Mickiewicz University in Poznań, Umultowska 89, 61–614 Poznań, Poland.

Abstract

We provide a comprehensive list of microorganisms (algae, Archaea, bacteria, cyanobacteria, fungi, and Protista) inhabiting cryoconite holes on glaciers throughout the world, giving an updated taxonomy accompanied by geographic coordinates and localities. The list consists of 370 taxa reported from cryoconite holes (mostly from Arctic and Antarctic regions and European Alps). However, most of the taxa were not identified to the species level. Until now only 39 identified species or subspecies of bacteria and Archaea, 11 fungi, 17 cyanobacteria, 62 algae, and 13 Protista are known from cryoconite holes, which are only about 38% of total number of taxa reported from these ephemeral environments. Almost 62% of the taxa were marked as cf. (confer) or were identified only to the genera or even to the higher taxonomic units (such as families or orders). This wide and detailed review assists other scientists to identify the gaps in our knowledge about cryobionts and indicates directions for further zoogeographical and taxonomical studies in this unique freshwater habitat.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, W.P. 1966. Studies of ablation and run-off on an Arctic glacier. Unpublished PhD dissertation. McGill University, Montreal, Department of Geograph.Google Scholar
Aescht, E. 2005. Ciliaten (Protozoa: Ciliophora) im Eisstaub (Kryokonit) zweier Gletscher der Ötztaler Alpen (Tirol, Österreich). Berichte des Naturwissenschaftlich Medizinischen Vereins in Innsbruck 92: 8993.Google Scholar
Anesio, A.M. and Laybourn-Parry, J.. 2012. Glaciers and ice sheets as a biome. Trends in Ecology and Evolution 4: 21225.Google Scholar
Anesio, A.M., Hodson, A., Fritz, A. and others. 2009. High microbial activity on glaciers: importance to the global carbon cycle. Global Change Biology 15: 955960.CrossRefGoogle Scholar
Anesio, A.M., Mindl, B., Laybourn-Parry, J. and others. 2007. Viral dynamics in cryoconite holes on a high Arctic glacier (Svalbard). Journal Of Geophysical Research 112: 120.CrossRefGoogle Scholar
Anesio, A.M., Sattler, B., Foreman, Ch. and others. 2010. Carbon fluxes through bacterial communities on glacier surfaces. Annals of Glaciology 51 (56): 3240.CrossRefGoogle Scholar
Bellas, Ch.M., Anesio, A.M., Telling, J. and others. 2013. Viral impacts on bacterial communities in Arctic cryoconite. Environmental Research Letters 8: 19.CrossRefGoogle Scholar
Berggren, S. 1871. Alger från Grönlands inlandis. KuningligaVetenskaps-Akademiens Forhandlingar 2: 293296.Google Scholar
Bradbury, J. 2001. Of tardigrades, trehalose, and tissue engineering. Lancet 358 (9279): 392.CrossRefGoogle ScholarPubMed
Broady, P.A. 1989a. Survey of algae and other terrestrial biota at Edward VII Peninsula, Marie Byrd Land. Antarctic Science 1 (3): 215224.CrossRefGoogle Scholar
Broady, P.A. 1989b. Broadscale patterns in the distribution of aquatic and terrestrial vegetation at three ice-free regions on Ross Island. Hydrobiologia 172: 7795.CrossRefGoogle Scholar
Broady, P.A. and Kibblewhite, A.L.. 1991. Morphological characterization of Oscillatoriales (Cyanobacteria) from Ross Island and southern Victoria Land. Antarctic Science 3 (1): 3545.CrossRefGoogle Scholar
Cameron, K.A, Hodson, A.J and Osborn, A.M.. 2012. Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiology Ecology 82: 254267.CrossRefGoogle ScholarPubMed
Cardinale, B.J., Duffy, J.E., Gonzalez, A. and others. 2012. Biodiversity loss and its impact on humanity. Nature 486: 5967.CrossRefGoogle ScholarPubMed
Casamatta, D.A., Vis, M.L. and Sheath, R.G.. 2003. Cryptic species in cyanobacterial systematics: a case study of Phormidium retzii (Oscillatoriales) using RAPD molecular markers and 16S rDNA sequence data. Aquatic Botany 77: 295309.CrossRefGoogle Scholar
Christner, B.C., Kvitko, B.H. and Reeve, J.N.. 2003. Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7: 177–83.CrossRefGoogle ScholarPubMed
Cook, J.M., Hodson, A.J., Anesio, A.M. and others. 2012. An improved estimate of microbially mediated carbon fluxes from the Greenland ice sheet. Journal of Glaciology 58: 10981108.CrossRefGoogle Scholar
Dastych, H., Kraus, H.J. and Thaler, K.. 2003. Redescription and notes on the biology of the glacier tardigrade Hypsibius klebelsbergi Mihelcic, 1959 (Tardigrada), based on material from Ötztal Alps, Austria. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 100: 73100.Google Scholar
Díaz, S., Fargione, J., Stuart, F.I Chapin 111 and other. 2006. Biodiversity loss threatens human well-being. PLoS Biology 4 (8): e277. DOI: 10.1371/journal.pbio.0040277.CrossRefGoogle ScholarPubMed
Edwards, A., Anesio, A.M., Rassner, S.M. and others. 2011. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. The ISME Journal 5: 150160.CrossRefGoogle ScholarPubMed
Edwards, A., Douglas, B., Anesio, A.M. and others. 2013a. A distinctive fungal community inhabiting cryoconite holes on glaciers in Svalbard. Fungal Ecology 6 (2): 168176.CrossRefGoogle Scholar
Edwards, A., Pachebat, J.A., Swain, M. and others. 2013b. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem. Environmental Research Letters 8 (3): 111.CrossRefGoogle Scholar
Edwards, A, Rassner, A.M. Anesio and others, . 2013c. Contrasts between the cryoconite and ice-marginal bacterial communities of Svalbard glaciers. Polar Research 32: 19468, URL: http://dx.doi.org/10.3402/polar.v32i0.19468.CrossRefGoogle Scholar
Edwards, A., Mur, L.A.J., Girdwood, E.E. and others. 2014. Coupled cryoconite ecosystem structure–function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. FEMS Microbiology Ecology 89: 222237.CrossRefGoogle ScholarPubMed
Fenchel, T., Esteban, G.F. and Finlay, B.J.. 1997. Level versus global diversity of microorganisms: cryptic diversity of ciliated protozoa. Oikos 80: 220225.CrossRefGoogle Scholar
Foreman, C. M., Sattler, B., Mikucki, J.A. and others. 2007. Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. Journal of Geophysical Research 112: 111.CrossRefGoogle Scholar
Fountain, A., Tranter, M., Nylen, T.H. and others. 2004. Evolution of cryoconite holes and their contribution to melt water runoff from glaciers in the McMurdo Dry Valleys, Antarctica. Journal of Glaciology 50: 3545.CrossRefGoogle Scholar
Gerdel, R.W. and Drouet, F., 1960. The cryoconite of the Thule Area, Greenland. Transactions of the American Microscopical Society 79: 256272.CrossRefGoogle Scholar
Gribbon, P.W.F. 1979. Cryoconite holes on Sermikavsak, West Greenland. Journal of Glaciology 22: 177–81.CrossRefGoogle Scholar
Heger, T. J., Mitchell, E.A.D., Todorov, M. and others. 2010. Molecular phylogeny of euglyphid testate amoebae (Cercozoa: Euglyphida) suggests transitions between marine supralittoral and freshwater/terrestrial environments are infrequent. Molecular Phylogenetics and Evolution 55: 113122.CrossRefGoogle ScholarPubMed
Hodson, A., Bøggild, C., Hanna, E. and others. 2010a. The cryoconite ecosystem on the Greenland ice sheet. Annals of Glaciology 51 (56): 123129.CrossRefGoogle Scholar
Hodson, A., Cameron, K., Bøggild, C. and others. 2010b. The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. Journal of Glaciology 56 (196): 349362.CrossRefGoogle Scholar
Hodson, A., Anesio, A.M., Tranter, M. and others. 2008. Glacial ecosystems. Ecological Monographs 78: 4167.CrossRefGoogle Scholar
Kaczmarek, Ł., Michalczyk, Ł. and McInnes, S.J.. 2014. Annotated zoogeography of non-marine Tardigrada. Part I: Central America. Zootaxa, 3763 (1): 162.CrossRefGoogle ScholarPubMed
Kaczmarek, Ł., Michalczyk, Ł. and McInnes, S.J.. 2015. Annotated zoogeography of non-marine Tardigrada. Part II: South America. Zootaxa 3923 (1): 1107.CrossRefGoogle ScholarPubMed
Kaštovská, K., Elster, J., Stibal, M. and other. 2005. Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microbial Ecology 50: 396407.CrossRefGoogle ScholarPubMed
Kaštovská, K., Stibal, M., Sabacka, M. and others. 2007. Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by epifluorescence microscopy and PLFA. Polar Biology 30: 277287.CrossRefGoogle Scholar
Kohshima, S. 1984. A novel cold tolerant insect found in a Himalayan glacier. Nature 310: 225227.CrossRefGoogle Scholar
Kohshima, S. 1987. Formation of dirt layers and surface dust by micro-plant growth in Yala (Dakpatsen) glacier, Nepal Himalayas. Bulletin of Glacier Research 5: 6368.Google Scholar
Kohshima, S. 1989. Glaciological importance of micro-organisms in the surface mud-like materials and dirt layer particles of the Chongce Ice Cap and Gozha glacier, West Kunlun Mountain, China. Bulletin of Glacier Research 7: 5966.Google Scholar
Langford, H., Hodson, A., Banwart, S. and other. 2010. The microstructure and biogeochemistry of Arctic cryoconite granules. Annals of Glaciology 51 (56): 8794.CrossRefGoogle Scholar
Lee, Y. M., Kim, S.Y., Jung, J. and others. 2011. Cultured bacterial diversity and human impact on alpine glacier cryoconite. Journal of Microbiology 49 (3): 355362.CrossRefGoogle ScholarPubMed
Lutz, S., Anesio, A.M., Villar, S.E.J. and other, . 2014. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiology Ecology 89: 402414.CrossRefGoogle ScholarPubMed
MacDonell, S. and Fitzsimons, S.. 2008. The formation and hydrological significance of cryoconite holes. Progress in Physical Geography 32 (6): 595610.CrossRefGoogle Scholar
Margesin, R. and Fell, J.C.. 2008. Mrakiella cryoconiti gen. nov., sp. nov., a psychrophilic anamorphic, basidiomycetous yeast from alpine and arctic habitats. The International Journal of Systematic and Evolutionary Microbiology 58: 29772982.CrossRefGoogle Scholar
Margesin, R., Fonteyne, P.A., Schinner, F. and other, . 2007. Novel psychrophilic basidiomycetous yeast species from alpine environments: Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov., and Rhodotorula glacialis sp. nov, The International Journal of Systematic and Evolutionary Microbiology 57: 21792184.CrossRefGoogle ScholarPubMed
Margesin, R., Spröer, C., Schumann, P., and other. 2003. Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. The International Journal of Systematic and Evolutionary Microbiology 53: 12911296.CrossRefGoogle Scholar
Maurette, M. 1996. Carbonaceous micrometeorites and the origin of life. Origins of Life and Evolution of the Biosphere 28: 385412.CrossRefGoogle Scholar
Maurette, M., Jehanno, C., Robin, E. and Hammer, C.. 1987. Characteristics and mass distribution of extraterrestrial dust from the Greenland ice cap. Nature 301: 473477.Google Scholar
McIntyre, N.F. 1984. Cryoconite hole thermodynamics. Canadian Journal of Earth Sciences 21 (2): 152156.CrossRefGoogle Scholar
Mieczan, T., Górniak, D., Świątecki, A. and others. 2013a. Vertical microzonation of ciliates in cryoconite holes in Ecology Glacier, King George Island. Polish Polar Research 34 (2): 201212.CrossRefGoogle Scholar
Mieczan, T., Górniak, D., Świątecki, A. and other. 2013b. The distribution of ciliates on Ecology Glacier (King George Island, Antarctica): relationships between species assemblages and environmental parameters. Polar Biology 36: 249258.CrossRefGoogle Scholar
Milankovitch, M. 1998. Canon of insolation and the ice age problem. Belgrade: Zavod za Udžbenike i Nastavna Sredstva. ISBN 86-17-06619-9.Google Scholar
Mueller, D.R. 2001. A bipolar comparison of glacial cryoconite ecosystems. Unpublished MSc dissertation. Montreal: McGill University, Department of Geography.Google Scholar
Mueller, D.R. and Pollard, W.H.. 2004. Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biology 27: 6674.CrossRefGoogle Scholar
Mueller, D.R., Vincent, W.F., Pollard, W.H. and other. 2001. Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwigia, Beiheft 123: 171195.Google Scholar
Nisbet, E.G. and Sleep, N.H.. 2001. The habitat and nature of early life. Nature 409 (6823): 10831091.CrossRefGoogle ScholarPubMed
Porazinska, D.L., Fountain, A.G., Nylen, T.H. and others. 2004. The biodiversity and biogeochemestry of cryoconite holes from McMurdo dry valley glaciers, Antarctica. Arctic, Antarctic and Alpine Research 36: 8491.CrossRefGoogle Scholar
Säwström, Ch., Granéli, W., Laybourn-Parry, J. and other. 2007. High viral infection rates in Antarctic and Arctic bacterioplankton. Environmental Microbiology 9 (1): 250255.CrossRefGoogle ScholarPubMed
Säwström, Ch., Mumford, P., Marshall, W. and others. 2002. The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79 N). Polar Biology 25: 591596.CrossRefGoogle Scholar
Schill, R.O., Mali, B., Dandekar, T. and others. 2009. Molecular mechanisms of tolerance in tardigrades: new perspectives for preservation and stabilization of biological material. Biotechnology Advances 27: 348353.CrossRefGoogle ScholarPubMed
Sheridan, P.P., Miteva, V.I. and Brenchley, J.E.. 2003. Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Applied and Environmental Microbiology 69: 21532160.CrossRefGoogle ScholarPubMed
Singh, P. and Singh, S.M.. 2012. Characterization of yeast and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic. Polar Biology 35: 575583.CrossRefGoogle Scholar
Singh, P., Singh, S.M. and Dhakephalkar, P.. 2014a. Diversity, cold active enzymes and adaptation strategies of bacteria inhabiting glacier cryoconite holes of High Arctic. Extremophiles 18 (2): 229242.CrossRefGoogle ScholarPubMed
Singh, P., Hanada, Y., Singh, S.M. and other. 2014b. Antifreeze protein activity in Arctic cryoconite bacteria. FEMS Microbiology Letters 351 (1): 1422.CrossRefGoogle ScholarPubMed
Singh, P., Singh, S.M., Tsuji, M. and others. 2014c. Rhodotorula svalbardensis sp. nov., a novel yeast species isolated from cryoconite holes of Ny-Ålesund, Arctic. Cryobiology 68: 122128.CrossRefGoogle Scholar
Stanish, L.F., Bagshaw, E.A., McKnight, D.M. and others. 2013. Environmental factors influencing diatom communities in Antarctic cryoconite holes. Environmental Research Letters 8: 18.CrossRefGoogle Scholar
Steinböck, O. 1936. Über Kryokonitlöcher und ihre biologische Bedeutung. Zeitschrift für Gletscherkunde und Glazialgeologie 24: 121.Google Scholar
Steinböck, O. 1957. Über die Fauna der Kryokonitlöcher alpiner Gletscher. Schlern 31: 6570.Google Scholar
Stibal, M. and Tranter, M.. 2007. Laboratory investigation of inorganic carbon uptake by cryoconite debris from Werenskioldbreen, Svalbard. Journal of Geophysical Research 112: 19.CrossRefGoogle Scholar
Stibal, M., Sabacka, M. and Kaštovská, K.. 2006. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of Cyanobacteria and Algae. Microbial Ecology 52: 644654.CrossRefGoogle ScholarPubMed
Stibal, M., Tranter, M., Benning, M.G. and other. 2008. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environmental Microbiology 10 (8): 21722178.CrossRefGoogle Scholar
Takeuchi, N. 2002. Optical characteristics of cryoconite surface dust on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite. Annals of Glaciology 34: 409414.CrossRefGoogle Scholar
Takeuchi, N. and Kohshima, S.. 2004. A snow algal community on Tyndall Glacier in the Southern Patagonia Icefield, Chile. Arctic Antarctic and Alpine Research 36: 9299.CrossRefGoogle Scholar
Takeuchi, N., Kohshima, S. and Segawa, T.. 2003. Effect of cryoconite and snow algal communities on surface albedo on maritime glaciers in South Alaska. Bulletin of Glaciological Research 20: 2127.Google Scholar
Takeuchi, N., Kohshima, S. and Seko, K. 2001a. Structure, formation, and darkening process of albedo-reducing material cryoconite on a Himalayan glacier: a granular algal mat growing on the glacier. Arctic Antarctic and Alpine Research 33: 115–22.CrossRefGoogle Scholar
Takeuchi, N., Nishiyama, H. and Li, Z.. 2010. Structure and formation process of cryoconite granules on Ürümqi glacier No. 1, Tien Shan, China. Annals of Glaciology 51 (56): 914.CrossRefGoogle Scholar
Takeuchi, N., Kohshima, S., Goto-Azuma, K. and other. 2001b. Biological characteristics of dark coloured material (cryoconite) on Canadian Arctic glaciers (Devon and Penny Ice Cap). Memoirs of the National Institute of Polar Research 54: 495505.Google Scholar
Takeuchi, N., Kohshima, S., Shiraiwa, T. and other. 2001c. Characteristics of cryoconite (surface dust on glaciers) and surface albedo of a Patagonian glacier, Tyndall Glacier, Southern Patagonia Icefield. Japanese Bulletin of Glaciological Research 18: 6569.Google Scholar
Takeuchi, N., Matsuda, Y., Sakai, A. and other. 2005. A large amount of biogenic surface dust (cryoconite) on a glacier in the Qilian Mountains, China. Bulletin of Glaciological Research 22: 18.Google Scholar
Takeuchi, N., Kohshima, S., Yoshimura, Y. and others. 2000. Characteristics of cryoconite holes on a Himalayan glacier, Yala Glacier Central Nepal. Bulletin of Glaciological Research 17: 5159.Google Scholar
Telling, J., Anesio, A.M., Hawkings, J. and others. 2010. Measuring rates of gross photosynthesis and net community production in cryoconite holes: a comparison of field methods. Annals of Glaciology 51 (56): 153162.CrossRefGoogle Scholar
Telling, J., Anesio, A.M., Tranter, M. and others. 2014. Spring thaw ionic pulses boost nutrient availability and microbial growth in entombed Antarctic Dry Valley cryoconite holes. Frontiers in Microbiology 5: 115.CrossRefGoogle ScholarPubMed
Tranter, M.A., Fountain, C., Lyons, F.B. and others. 2004. Extreme hydrological conditions in natural microcosms entombed within Antarctic ice. Hydrological Processes 18: 379387.CrossRefGoogle Scholar
Uetake, J., Naganuma, T., Hebsgaard, M.B. and others. 2010. Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Science, 4: 7180.CrossRefGoogle Scholar
Van de Vijver, B., Mataloni, G., Stanish, L. and other. 2010. New and interesting species of the genus Muelleria (Bacillariophyta) from the Antarctic region and South Africa. Phycologia 49 (1): 2241.CrossRefGoogle Scholar
Van den Burg, B. 2003. Extremophiles as a source for novel enzymes. Current Opinion in Microbiology 6: 213218.CrossRefGoogle ScholarPubMed
Vaughan, D.G., Comiso, J.C., Allison, I. and others. 2013. Observations: cryosphere. In: Climate change 2013: the physical science basis. Contribution of working group I. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M. (editors). Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Von Drygalski, E. 1897. Die Kryoconitlöcher. In: Kühl, W.H. (editor). Grønland-Expedition der Gesellschaft für Erdkunde zu Berlin 1891–1893, Vol. 1, Berlin: W.H. Kühl, 93103.Google Scholar
WGMS 2008. Global glacier changes: facts and figures. URL: http://www.grid.unep.ch/glaciers/Google Scholar
Wharton, R.A., Vinyard, W.C., Parker, B.C. and others. 1981. Algae in cryoconite holes on the Canada Glacier in southern Victoria Land, Antarctica. Phycologia 20 (2): 208211.CrossRefGoogle Scholar
Wharton, R.A. and Vinyard, W.C.. 1983. Distribution of snow and ice algae in western North America. Madrono 30 (4): 201209.Google Scholar
Wharton, R.A., McKay, C.P., Simmons, G.M. and other. 1985. Cryoconite holes on Glaciers. Bioscience 35: 499503.CrossRefGoogle ScholarPubMed
Wilson, L.R. 1955. Snow and ice residues: Cryoconite. USA: Arctic Desert, Tropic Information Center, United States Air Force (project Mint Julep: investigation or the smooth ice areas of the Greenland ice cap. Report A-I04B).Google Scholar
Wittrock, V.B. 1885. Über die Schnee– und Eisflora, besonders in arktischen Gegenden. In: von Norderskiöld, A.E. (editor). Studier och Forskningar Föranledda af Mina Resor i Höga Norden. Stockholm. Leipzig: Brockhouse, Studien und Forschungen: 67–119.Google Scholar
Yallop, M.L. and Anesio, A.M.. 2010. Benthic diatom flora in supra-glacial habitats: a generic level comparison. Annals of Glaciology 51: 1522.CrossRefGoogle Scholar
Yallop, M.L., Anesio, A.M., Perkins, R.G. and others. 2012. Photophysiology and albedo-changing potential of the ice-algal community on the surface of the Greenland ice sheet. ISME Journal 6: 23022313.CrossRefGoogle ScholarPubMed
Zarsky, J.D., Stibal, M., Hodson, A. and others. 2013. Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia-oxidizing archaea. Environmental Research Letters 8: 111.CrossRefGoogle Scholar
Zawierucha, K., Kolicka, M., Takeuchi, N. and others. 2015. What animals can live in cryoconite holes? A faunal review. Journal of Zoology 295: 159169.CrossRefGoogle Scholar