Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T20:15:31.098Z Has data issue: false hasContentIssue false

Strontium isotopes and the long-term residency of thalattosuchians in the freshwater environment

Published online by Cambridge University Press:  23 December 2015

Jeremy E. Martin
Affiliation:
UMR 5276 CNRS, Laboratoire de Géologie de Lyon: Terre, Planète et Environnement, UMR CNRS 5276 (CNRS, ENS, Université Lyon 1), Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France. E-mail: jeremy.martin@ens-lyon.fr.
Uthumporn Deesri
Affiliation:
Palaeontological Research and Education Centre, Mahasarakham University, Maha Sarakham, 44150, Thailand.
Romain Liard
Affiliation:
Palaeontological Research and Education Centre, Mahasarakham University, Maha Sarakham, 44150, Thailand.
Athiwat Wattanapituksakul
Affiliation:
Palaeontological Research and Education Centre, Mahasarakham University, Maha Sarakham, 44150, Thailand.
Suravech Suteethorn
Affiliation:
Palaeontological Research and Education Centre, Mahasarakham University, Maha Sarakham, 44150, Thailand.
Komsorn Lauprasert
Affiliation:
Palaeontological Research and Education Centre, Mahasarakham University, Maha Sarakham, 44150, Thailand.
Haiyan Tong
Affiliation:
Palaeontological Research and Education Centre, Mahasarakham University, Maha Sarakham, 44150, Thailand.
Eric Buffetaut
Affiliation:
Laboratoire de Géologie de l’Ecole Normale Supérieure, CNRS (UMR 8538), 24 rue Lhomond, Paris Cedex 05, 75231, France.
Varavudh Suteethorn
Affiliation:
Palaeontological Research and Education Centre, Mahasarakham University, Maha Sarakham, 44150, Thailand.
Guillaume Suan
Affiliation:
UMR 5276 CNRS, Laboratoire de Géologie de Lyon: Terre, Planète et Environnement, UMR CNRS 5276 (CNRS, ENS, Université Lyon 1), Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France. E-mail: jeremy.martin@ens-lyon.fr.
Philippe Telouk
Affiliation:
UMR 5276 CNRS, Laboratoire de Géologie de Lyon: Terre, Planète et Environnement, UMR CNRS 5276 (CNRS, ENS, Université Lyon 1), Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France. E-mail: jeremy.martin@ens-lyon.fr.
Vincent Balter
Affiliation:
UMR 5276 CNRS, Laboratoire de Géologie de Lyon: Terre, Planète et Environnement, UMR CNRS 5276 (CNRS, ENS, Université Lyon 1), Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France. E-mail: jeremy.martin@ens-lyon.fr.

Abstract

Thalattosuchians are crocodylomorphs mainly known from marine strata of Early Jurassic to Early Cretaceous age. They represent the earliest crocodylomorph radiation to an aquatic habitat and their evolutionary history offers very few records from freshwater settings. Here, we report several exquisitely preserved thalattosuchian skulls attributed to a derived teleosaurid from a pedogenic horizon located at the base of a fluvial series of alternating silts and sandstones of the Phu Kradung Formation (Upper Jurassic) of northeastern Thailand. Using laser ablation multicollector inductively coupled mass spectrometry (MC-ICP-MS) on tooth enamel and dentine, we measured isotopic ratios of strontium (87Sr/86Sr) to test the habitat of these teleosaurids. In addition, Sr concentrations of the dental tissues were estimated from the calibrated signal intensities of the Sr isotope measurements. The dataset includes bioapatite (teeth or scales) of eight terrestrial and five aquatic vertebrates. Theropods exhibit lower Sr concentrations both in enamel and dentine compared to others groups, a pattern in accordance with the calcium biopurification process, which predicts that Sr concentrations in the body of vertebrates decrease up the trophic chain. It also excludes the possibility that diagenesis has completely overprinted the Sr isotope compositions of the fossil assemblage, which exhibits a homogeneous 87Sr/86Sr signature above the Late Jurassic seawater value. Values for teleosaurid teeth are in the range of other values for vertebrates in the continental assemblage and imply that these crocodylomorphs did not migrate between freshwater and marine habitats at least in the time constraint of the mineralizing tooth. This result represents the first demonstration that a population of teleosaurids was established for a prolonged time in a freshwater environment. Whether the ability of teleosaurids to inhabit freshwater habitats is a secondary adaptation or whether it is plesiomorphic and inherited from freshwater ancestors is discussed.

Type
Articles
Copyright
Copyright © 2015 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Albarède, F. 1995. Introduction to geochemical modelling. Cambridge University Press, Cambridge, 564 p.CrossRefGoogle Scholar
Andrews, C. W. 1913. A descriptive catalogue of the marine reptiles of the Oxford Clay (Part II) British Museum, London, 206 p.Google Scholar
Andrews, C. W. 1922. Description of a new plesiosaur from the Weald Clay of Berwick (Sussex). Quarterly Journal of the Geological Society of London 78:285298.CrossRefGoogle Scholar
Bader, K. S., Hasiotis, S. T., and Martin, L. D.. 2009. Application of forensic science techniques to trace fossils on dinosaur bones from a quarry in the upper Jurassic Morrison Formation, northeastern Wyoming. Palaios 24:140158.CrossRefGoogle Scholar
Baird, I. G., and Beasley, I. L.. 2005. Irrawaddy dolphin Orcaella brevirostris in the Cambodian Mekong River: an initial survey. Oryx 39:301310.CrossRefGoogle Scholar
Balter, V. 2004. Allometric constraints on Sr/Ca and Ba/Ca partitioning in terrestrial mammalian trophic chains. Oecologia 139:8388.CrossRefGoogle ScholarPubMed
Balter, V., Braga, J., Télouk, P., and Thackeray, J. F.. 2012. Evidence for dietary change but not landscape use in South African early hominins. Nature 489:558560.CrossRefGoogle Scholar
Balter, V., Person, A., Labourdette, N., Drucker, D., Renard, M., and Vandermeersch, B.. 2001. Les Néandertaliens étaient-ils essentiellement carnivores? Résultats préliminaires sur les teneurs en Sr et en Ba de la paléobiocénose mammalienne de Saint-Césaire. Comptes Rendus de l’Académie des Sciences - Series IIA - Earth and Planetary Science 332:5965.Google Scholar
Balter, V., Bocherens, H., Person, A., Labourdette, N., Renard, M., and Vandermeersch, B.. 2002. Ecological and physiological variability of Sr/Ca and Ba/Ca in mammals of West European mid-Würmian food webs. Palaeogeography, Palaeoclimatology, Palaeoecology 186:127143.CrossRefGoogle Scholar
Balter, V., Telouk, P., Reynard, B., Braga, J., Thackeray, F., and Albarède, F.. 2008. Analysis of coupled Sr/Ca and 87Sr/86Sr variations in enamel using laser-ablation tandem quadrupole-multicollector ICPMS. Geochimica et Cosmochimica Acta 72:39803990.CrossRefGoogle Scholar
Bartholomai, A. L. 1966. The discovery of plesiosaurian remains in freshwater in Queensland. Australian Journal of Science 28:437.Google Scholar
Blum, J. D., Taliaferro, E. H., Weisse, M. T., and Holmes, R. T.. 2000. Changes in Sr/Ca, Ba/Ca and 87Sr/86Sr ratios between trophic levels in two forest ecosystems in the northeastern U.S.A. Biogeochemistry 49:87101.CrossRefGoogle Scholar
Budd, P., Montgomery, J., Barreiro, B., and Thomas, R. G.. 2000. Differential diagenesis of strontium in archaeological human dental tissues. Applied Geochemistry 15:687694.CrossRefGoogle Scholar
Buffetaut, E. 1977. Données nouvelles sur les crocodiliens paléogènes du Pakistan et de Birmanie. Comptes Rendus de l’Académie des Sciences, Paris 285:869872.Google Scholar
Buffetaut, E. 1978. Crocodilian remains from the Eocene of Pakistan. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 156:262283.Google Scholar
Buffetaut, E. 1982. Le crocodilien Machimosaurus von Meyer (Mesosuchia, Teleosauridae) dans le Kimméridgien de l’Ain. Bulletin trimestriel de la Société Géologique de Normandie et des Amis du Muséum du Havre 69:1727.Google Scholar
Buffetaut, E. 1994. The significance of dinosaur remains in marine sediments: an investigation based on the French record. Berliner Geowissenschaftliche Abhandlungen Reihe E 13:125133.Google Scholar
Buffetaut, E., and Suteethorn, V.. 2007. A sinraptorid theropod (Dinosauria: Saurischia) from the Phu Kradung Formation of northeastern Thailand. Bulletin de la Société Géologique de France 178:497502.CrossRefGoogle Scholar
Buffetaut, E., Suteethorn, V., and Tong, H.. 2001. The first thyreophoran dinosaur from Southeast Asia: a stegosaur vertebra from the Late Jurassic Phu Kradung Formation of Thailand. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 2001:95102.CrossRefGoogle Scholar
Buffetaut, E., Tong, H., Suteethorn, V., and Raksaskulwong, L.. 1994. Jurassic vertebrates from the southern Peninsula of Thailand and their implications, a preliminary report. Proceedings of the International Symposium on Stratigraphic Correlation of Southeast Asia:253–256.Google Scholar
Buffetaut, E., Leloeuff, J., Tong, H., Duffaud, S., Cavin, L., Garcia, G., and Ward, D.. 1999. Un nouveau gisement de vertébrés du crétacé supérieur à Cruzy (Hérault, sud de la France). Comptes Rendus de l’Académie des Sciences - Series IIA - Earth and Planetary Science 328:203208.Google Scholar
Burton, J. H., Price, T. D., and Middleton, W. D.. 1999. Correlation of bone Ba/Ca and Sr/Ca due to biological purification of calcium. Journal of Archaeological Science 26:609616.CrossRefGoogle Scholar
Carter, A., and Bristow, C. S.. 2003. Linking hinterland evolution and continental basin sedimentation by using detrital zircon thermochronology: a study of the Khorat Plateau Basin, eastern Thailand. Basin Research 15:271285.CrossRefGoogle Scholar
Cassens, I., Vicario, S., Waddell, V. G., Balchowsky, H., Van Belle, D., Ding, W., Fan, C., Mohan, R. S. L., Simoes-Lopes, P. C., Bastida, R., Meyer, A., Stanhope, M. J., and Milinkovitch, M. C.. 2000. Independent adaptation to riverine habitats allowed survival of ancient cetacean lineages. Proceedings of the National Academy of Sciences 97:1134311347.CrossRefGoogle ScholarPubMed
Cuny, G., Liard, R., Deesri, U., Liard, T., Khamha, S., and Suteethorn, V.. 2014. Shark faunas from the Late Jurassic—Early Cretaceous of northeastern Thailand. Paläontologische Zeitschrift 88:309328.CrossRefGoogle Scholar
Deesri, U. 2012. A new species of the ginglymodian fish Isanichthys (Actinopterygii, Holostei) from the Late Jurassic Phu Kradung Formation, northeastern Thailand. Acta Palaeontologica Polonica. 59:313331.Google Scholar
Elias, R. W., Hirao, Y., and Patterson, C. C.. 1982. The circumvention of the natural biopurification of calcium along nutrient pathways by atmospheric inputs of industrial lead. Geochimica et Cosmochimica Acta 46:25612580.CrossRefGoogle Scholar
Erickson, G. M. 1996. Daily deposition of dentine in juvenile Alligator and assessment of tooth replacement rates using incremental line counts. Journal of Morphology 228:189194.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Eudes-Deslongchamps, J. A. 1870. Notes sur les reptiles fossiles appartenant à la famille des téléosauriens, dont les débris ont été recueillis dans les assises jurassiques de la Normandie. Bulletin de la Société Géologique de France 20:299349.Google Scholar
Fernández, M., and Gasparini, Z. B.. 2000. Salt glands in a Tithonian metriorhynchid crocodyliform and their physiological significance. Lethaia 33:269276.CrossRefGoogle Scholar
Fernández, M., and Gasparini, Z.. 2008. Salt glands in the Jurassic metriorhynchid Geosaurus: implications for the evolution of osmoregulation in Mesozoic marine crocodyliforms. Naturwissenschaften 95:7984.CrossRefGoogle ScholarPubMed
Fischer, J., Voigt, S., Franz, M., Schneider, J. W., Joachimski, M. M., Tichomirowa, M., Götze, J., and Furrer, H.. 2012. Palaeoenvironments of the late Triassic Rhaetian Sea: Implications from oxygen and strontium isotopes of hybodont shark teeth. Palaeogeography, Palaeoclimatology, Palaeoecology 353–355:6072.CrossRefGoogle Scholar
Fischer, J., Schneider, J., Voigt, S., Joachimski, M., Tichomirowa, M., Tütken, T., Götze, J., and Berner, U.. 2013. Oxygen and strontium isotopes from fossil shark teeth: environmental and ecological implications for Late Palaeozoic European basins. Chemical Geology 342:4462.CrossRefGoogle Scholar
Fraas, E. 1901. Die Meerkrokodile (Thalattosuchia n. g.) eine neue sauriergruppe der Juraformation. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg 57:409418.Google Scholar
Gandola, R., Buffetaut, E., Monaghan, N., and Dyke, G.. 2006. Salt glands in the fossil crocodile Metriorhynchus. Journal of Vertebrate Paleontology 26:10091010.CrossRefGoogle Scholar
Geoffroy Saint-Hilaire, E. 1825. Recherche sur l’organisation des Gavials, sur leurs affinités naturelles desquelles résulte la nécessité d’une autre distribution générique: Gavialis, Teleosaurus, Steneosaurus. Mémoires du Muséum National d’Histoire Naturelle 12:97155.Google Scholar
Goloboff, P. A., Farris, J. S., and Nixon, K.. 2003. TNT: tree analysis using new technologies (Program and documentation available from the authors and at http:www.zmuc.dk/public/phylogeny).Google Scholar
Graustein, W. C. 1989. 87Sr/86Sr ratios measure the sources and flow of strontium in terrestrial ecosystems. Pp. 491–512 in Stable isotopes in ecological research, Chapter 18. Springer-Verlag.CrossRefGoogle Scholar
Hamilton, H., Caballero, S., Collins, A. G., and Brownell, R. L.. 2001. Evolution of river dolphins. Proceedings of the Royal Society B: Biological Sciences 268:549556.CrossRefGoogle ScholarPubMed
Hastings, A. K., Bloch, J. I., and Jaramillo, C. A.. 2011. A new longirostrine dyrosaurid (Crocodylomorpha, Mesoeucrocodylia) from the Paleocene of north-eastern Colombia: biogeographic and behavioural implications for new-world Dyrosauridae. Palaeontology 54:10951116.CrossRefGoogle Scholar
Hay, O. P. 1930. Second bibliography and catalogue of the fossil Vertebrata of North America, volume II. Carnegie institution of Washington Publication No. 390. Washington D.C.Google Scholar
Herrera, Y., Fernández, M. S., and Gasparini, Z.. 2013. The snout of Cricosaurus araucanensis: a case study in novel anatomy of the nasal region of metriorhynchids. Lethaia 46:331340.CrossRefGoogle Scholar
Hoppe, K. A., Koch, P. L., and Furutani, T. T.. 2003. Strontium in fossil bones and tooth enamel. International Journal of Osteoarchaeology 13:2028.CrossRefGoogle Scholar
Hua, S., and de Buffrénil, V.. 1996. Bone histology as a clue in the interpretation of functional adaptations in the Thalattosuchia (Reptilia, Crocodylia). Journal of Vertebrate Paleontology 16:703717.CrossRefGoogle Scholar
Jouve, S. 2009. The skull of Teleosaurus cadomensis (Crocodylomorpha; Thalattosuchia), and phylogenetic analysis of Thalattosuchia. Journal of Vertebrate Paleontology 29:88102.CrossRefGoogle Scholar
Kear, B. P. 2006. Marine reptiles from the lower Cretaceous of South Australia: elements of a high-latitude cold-water assemblage. Palaeontology 49:837856.CrossRefGoogle Scholar
Kear, B. P., and Barrett, P. M.. 2011. Reassessment of the Lower Cretaceous (Barremian) pliosauroid Leptocleidus superstes Andrews, 1922 and other plesiosaur remains from the nonmarine Wealden succession of southern England. Zoological Journal of the Linnean Society 161:663691.CrossRefGoogle Scholar
Khosla, A., Sertich, J. J. W., Prasad, G. V. R., and Verma, O.. 2009. Dyrosaurid remains from the Intertrappean Beds of India and the Late Cretaceous distribution of Dyrosauridae. Journal of Vertebrate Paleontology 29:13211326.CrossRefGoogle Scholar
Klug, S., Tütken, T., Wings, O., Sun, G., and Martin, T.. 2010. A Late Jurassic freshwater shark assemblage (Chondrichthyes, Hybodontiformes) from the southern Junggar Basin (Xinjiang, NW China). Palaeobiodiversity and Palaeoenvironments 90:241257.CrossRefGoogle Scholar
Kocsis, L., Ősi, A., Vennemann, T., Trueman, C. N., and Palmer, M. R.. 2009. Geochemical study of vertebrate fossils from the Upper Cretaceous (Santonian) Csehbánya Formation (Hungary): Evidence for a freshwater habitat of mosasaurs and pycnodont fish. Palaeogeography, Palaeoclimatology, Palaeoecology 280:532542.CrossRefGoogle Scholar
Kohn, M. J., Morris, J., and Olin, P.. 2013. Trace element concentrations in teeth – a modern Idaho baseline with implications for archeometry, forensics, and palaeontology. Journal of Archaeological Science 40:16891699.CrossRefGoogle Scholar
Krebs, B. 1967. Der Jura-Krokodilier Machimosaurus H. v. Meyer. Paläontologische Zeitschrift 41:4659.CrossRefGoogle Scholar
Krebs, B. 1968. Le crocodilien Machimosaurus. Serviços Geologicos de Portugal 14:153.Google Scholar
Liard, R., and Martin, J. E.. 2011. Relative position of the Mesozoic vertebrate localities in the Phu Kradung Formation of the Phu Phan uplift, Northeast Thailand. World Conference on Paleontology and Stratigraphy program and abstract, 191192.Google Scholar
Makádi, L., Caldwell, M. W., and Ősi, A.. 2012. The first freshwater mosasauroid (Upper Cretaceous, Hungary) and a new clade of basal mosasauroids. PLoS One 7:e51781. doi:10.1371/journal.pone.0051781.CrossRefGoogle Scholar
Martin, J. E., and Vincent, P.. 2013. New remains of Machimosaurus hugii von Meyer, 1837 (Crocodilia, Thalattosuchia) from the Kimmeridgian of Germany. Fossil Record 16:179196.CrossRefGoogle Scholar
Martin, J. E., Amiot, R., Lécuyer, C., and Benton, M. J.. 2014. Sea surface temperature contributes to marine crocodylomorph evolution. Nature Communications 5, doi:10.1038/ncomms5658.CrossRefGoogle ScholarPubMed
Maurer, A-F., Galer, S J. G., Knipper, C., Beierlein, L., Nunn, E. V., Peters, D., Tütken, T., Alt, K. W., and Schöne, B. R.. 2012. Bioavailable 87Sr/86Sr in different environmental samples – Effects of anthropogenic contamination and implications for isoscapes in past migration studies. Science of the Total Environment 433:216229.CrossRefGoogle ScholarPubMed
Mazzotti, F. J., and Dunson, W. A.. 1989. Osmoregulation in crocodilians. American Zoologist 29:903920.CrossRefGoogle Scholar
McArthur, J. M., Howarth, R. J., and Bailey, T. R.. 2001. Strontium Isotope Stratigraphy: LOWESS Version 3: Best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age. The Journal of Geology 109:155170.CrossRefGoogle Scholar
Metcalfe, I. 2009. Late Palaeozoic and Mesozoic tectonic and palaeogeographical evolution of SE Asia. Geological Society, London, Special Publications 315:723.Google Scholar
Mueller-Töwe, I. J. 2005. Phylogenetic relationships of the Thalattosuchia. Zitteliana A45:211213.Google Scholar
Nelson, B. K., DeNiro, M. J., Schoeninger, M. J., De Paolo, D. J., and Hare, P. E.. 1986. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone. Geochimica et Cosmochimica Acta 50:19411949.CrossRefGoogle Scholar
Peng, G.-Z., Ye, Y., Gao, Y.-H., Shu, C.-K., and Jiang, S.. 2005. Jurassic dinosaur fauna in Zigong. Sichuan People’s Publishing House, Chengdu236 p.Google Scholar
Pierce, S. E., and Benton, M. J.. 2006. Pelagosaurus typus Bronn, 1841 (Mesoeucrocodylia: Thalattosuchia) from the Upper Lias (Toarcian, Lower Jurassic) of Somerset, England. Journal of Vertebrate Paleontology 26:621635.CrossRefGoogle Scholar
Prokoph, A., Shields, G. A., and Veizer, J.. 2008. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Science Reviews 87:113133.CrossRefGoogle Scholar
Racey, A., and Goodall, J. G. S.. 2009. Palynology and stratigraphy of the Mesozoic Khorat Group red bed sequences from Thailand. Geological Society, London, Special Publications 315:6983.CrossRefGoogle Scholar
Racey, A., Love, M. A., Canham, A. C., Goodall, J. G. S., Polachan, S., and Jones, P. D.. 1996. Stratigraphy and reservoir potential of the Mesozoic Khorat Group, NE Thailand. Part 1: stratigraphy and sedimentary evolution. Journal of Petroleum Geology 19:540.CrossRefGoogle Scholar
Reynard, B., and Balter, V.. 2014. Trace elements and their isotopes in bones and teeth: diet, environments, diagenesis, and dating of archeological and paleontological samples. Palaeogeography Palaeoclimatology Palaeoecology 416:416.CrossRefGoogle Scholar
Sato, T., and Wu, X.-C.. 2003. Restudy of Bishanopliosaurus youngi Dong 1980, a freshwater plesiosaurian from the Jurassic of Chongqing. Vertebrata Palasiatica 41:1733.Google Scholar
Sato, T., Eberth, D. A., Nicholls, E. L., and Manabe, M.. 2005. Plesiosaur remains from non-marine to paralic sediments. Pp.249–276 in Dinosaur Provincial Park: a Spectacular Ancient Ecosystem Revealed. Indiana University Press, Bloomington, Indiana.Google Scholar
Schweissing, M. M., and Grupe, G.. 2003. Stable strontium isotopes in human teeth and bone: a key to migration events of the late Roman period in Bavaria. Journal of Archaeological Science 30:13731383.CrossRefGoogle Scholar
Sillen, A. 1986. Biogenic and diagenetic Sr/Ca in Plio-Pleistocene fossils of the Omo Shungura Formation. Paleobiology 12:311323.CrossRefGoogle Scholar
Sponheimer, M., Deruiter, D., Leethorp, J., and Spath, A.. 2005. Sr/Ca and early hominin diets revisited: new data from modern and fossil tooth enamel. Journal of Human Evolution 48:147156.CrossRefGoogle ScholarPubMed
Schmitz, B., Ingram, S. L., Dockery III, D. T., and Åberg, G.. 1997. Testing 87Sr/86Sr as a paleosalinity indicator on mixed marine, brackish-water and terrestrial vertebrate skeletal apatite in late Paleocene–early Eocene near-coastal sediments, Mississippi. Chemical Geology 140:275287.CrossRefGoogle Scholar
Suan, G., Rulleau, L., Mattioli, E., Suchéras-Marx, B., Rousselle, B., Pittet, B., Vincent, P., Martin, J. E., Léna, A., and Spangenberg E., J. 2013. Palaeoenvironmental significance of Toarcian black shales and event deposits from southern Beaujolais, France. Geological Magazine 150:728742.CrossRefGoogle Scholar
Tong, H., Claude, J., Suteethorn, V., Naksri, W., and Buffetaut, E.. 2009. Turtle assemblages of the Khorat Group (Late Jurassic-Early Cretaceous) of NE Thailand and their palaeobiogeographical significance. Geological Society, London, Special Publications 315:141152.CrossRefGoogle Scholar
Tütken, T. 2014. Isotope compositions (C, O, Sr, Nd) of vertebrate fossils from the Middle Eocene oil shale of Messel, Germany: Implications for their taphonomy and palaeoenvironment. Palaeogeography Palaeoclimatology Palaeoecology 416:92109.CrossRefGoogle Scholar
Tütken, T., Vennemann, T., and Pfretzschner, H-U.. 2011. Nd and Sr isotope compositions in modern and fossil bones – Proxies for vertebrate provenance and taphonomy. Geochimica et Cosmochimica Acta 75:59515970.CrossRefGoogle Scholar
Vavrek, M. J., Wilhelm, B. C., Maxwell, E. E., and Larsson, H. C. E.. 2014. Arctic plesiosaurs from the Lower Cretaceous of Melville Island, Nunavut, Canada. Cretaceous Research 50:273281.CrossRefGoogle Scholar
Wang, Q.-W., Liang, B., Kan, Z.-Z., Li, K., Zhu, B., and Ji, X.-T.. 2008. Paleoenvironmental reconstruction of Mesozoic dinosaur faunas in Sichuan Basin. Geology Press, Beijing 189 p.Google Scholar
Wegner, T. 1914. Brancasaurus brancai n.g. n.sp., ein Elasmosauridae aus dem Wealden Westfalens. Pp.235–305 in In Branca-Festschrift. Schoendorf, F., Berlin.Google Scholar
Wei, G., Ma, J., Liu, Y., Xie, L., Lu, W., Deng, W., Ren, Z., Zeng, T., and Yang, Y.. 2013. Seasonal changes in the radiogenic and stable strontium isotopic composition of Xijiang River water: Implications for chemical weathering. Chemical Geology 343:6775.CrossRefGoogle Scholar
Westphal, F. 1962a. Zum Lebensraum der Lias-Krokodilier. Paläontologische Zeitschrift 36:9.Google Scholar
Westphal, F. 1962b. Die Krokodilen des deutschen und englischen oberen Lias. Palaeontographica A 118:196.Google Scholar
Wheatley, P. V., Peckham, H., Newsome, S. D., and Koch, P. L.. 2012. Estimating marine resource use by the American crocodile Crocodylus acutus in southern Florida, USA. Marine Ecology Progress Series 447:211229.CrossRefGoogle Scholar
Wilberg, E. W. 2015. What’s in an Outgroup? The Impact of Outgroup Choice on the Phylogenetic Position of Thalattosuchia (Crocodylomorpha) and the Origin of Crocodyliformes. Systematic Biology. doi: 10.1093/sysbio/syv020.CrossRefGoogle Scholar
Young, C. C. 1948. Fossil crocodiles in China, with notes on dinosaurian remains associated with the Kansu crocodiles. Vertebrata Palasiatica 28:255288.Google Scholar
Young, M. T., Brusatte, S. L., de Andrade, M. B., Desojo, J. B., Beatty, B. L., Steel, L., Fernández, M. S., Sakamoto, M., Ruiz-Omeñaca, J. I., and Schoch, R. R.. 2012. The cranial osteology and feeding ecology of the metriorhynchid crocodylomorph genera Dakosaurus and Plesiosuchus from the Late Jurassic of Europe. PLoS One 7:e44985. doi:10.1371/journal.pone.0044985.CrossRefGoogle ScholarPubMed
Young, M. T., and de Andrade, M. B.. 2009. What is Geosaurus? Redescription of G. giganteus (Thalattosuchia, Metriorhynchidae) from the Upper Jurassic of Bayern, Germany. Zoological Journal of the Linnean Society 157:551585.CrossRefGoogle Scholar