Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T19:30:21.265Z Has data issue: false hasContentIssue false

Near-Junction Microfluidic Cooling for Wide Bandgap Devices

Published online by Cambridge University Press:  09 February 2016

Avram Bar-Cohen
Affiliation:
Defense Advanced Research Projects Agency, 675 N. Randolph Street, Arlington, VA 22203.
Joseph J. Maurer
Affiliation:
Booz Allen Hamilton, 3811 N. Fairfax Drive, Suite 650, Arlington, VA 22203.
Abirami Sivananthan*
Affiliation:
Booz Allen Hamilton, 3811 N. Fairfax Drive, Suite 650, Arlington, VA 22203.
Get access

Abstract

GaN has emerged as the material of choice for advanced power amplifier devices for both industrial and defense applications but near-junction thermal barriers severely limit the inherent capability of high-quality GaN materials. Recent “embedded cooling” efforts, funded by Defense Advanced Research Projects Agency Microsystems Technology Office (DARPA-MTO), have focused on reduction of this near-junction thermal resistance, through the use of diamond substrates and efficient removal of the dissipated power with convective and evaporative microfluidics. An overview of the accomplishments of the DARPA Near-Junction Thermal Transport (NJTT) program and recent results from the on-going DARPA Intra-Chip Embedded Cooling (ICECool) program are provided. It is shown that growth or bonding of diamond to GaN epitaxy has enabled a 3-5× increase in power handling capability per transistor unit area, while use of microfluidic cooling has enabled heat fluxes of 30 kW/cm2 at the transistor level and 1 kW/cm2 at the die-level, for a 3-6× improvement in the total RF output power of GaN power amplifiers. These demonstrations provide near-term validation of the large improvement in output power gained through embedded cooling and confirm the potential for well above a 6× improvement in GaN power amplifier output power to the electrical, rather than thermal, limits of GaN.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rosker, M., Bozada, C., Dietrich, H., Hung, A., Via, G. D., Binari, S., Vivierios, E., Cohen, E., and Hodiak, J., “The DARPA wide band gap semiconductors for RF applications (WBGS-RF) program: Phase II results” In CS ManTech 1.2 (2009).Google Scholar
Wu, Y.-F., Moore, M., Saxler, A., Wisleder, T., and Parikh, P.. “40-W/mm double field-plated GaN HEMTs.” In 2006 64th Device Research Conference, pp.151–152, (2006).CrossRefGoogle Scholar
Wu, Y.-F., Saxler, A., Moore, M., Smith, R. P., Sheppard, S., Chavarkar, P. M., Wisleder, T., Mishra, U. K., and Parikh, P.. “30-W/mm GaN HEMTs by field plate optimization,” IEEE Electron Device Letters, 25, no. 3, pp.117119 (2004).Google Scholar
Via, G. D., “GaN Reliability – Where we are and where we need to go,” CS ManTech 2014, pp. 1518, (2014).Google Scholar
Bar-Cohen, A., Felbinger, J., “Advanced Thermal management for Wide Bandgap Devices and Circuits,” Tutorial presentation in IEEE CSICS (2012).Google Scholar
Rosker, M., Maurer, J. J., Altman, D. H., Milne, J. G., Koontz, C. R., Hodiak, J. H., “Some implications of thermal management technologies on the performerance of airborne systems,” In iTHERM (2014).Google Scholar
Stevenson, R., “DARPA rattles up a half century,” Compound Semiconductor, pp. 1921, (2008).Google Scholar
Adams, C., “Cool It! Heat relief for RF power chips,” in Avionics Magazine (2015).Google Scholar
Patel, P., “Four new ways to cool computer chips,” in IEEE Spectrum, Nov (2015).Google Scholar
Bloschock, K.P., and Bar-Cohen, A., “Advanced thermal management technologies for defense electronics,” Proc. of SPIE, vol. 8405, pp. 84050I-1 – 84050I-12 (2012).Google Scholar
Chao, P. C., Chu, K., Creamer, C., Diaz, J., Yurovchak, T., Shur, M., Kallaher, R., McGray, C., Via, G., Blevins, J., “Low-Temperature Bonded GaN-on-Diamond HEMTs with 11 W/mm Output Power at 10 GHz,” IEEE trans Electron Devices, vol. 62, no.11, pp.36583664, (2015).CrossRefGoogle Scholar
Wang, P., “On-Chip Thermoelectric Cooling of Semiconductor Hot Spot,” PhD Dissertation, University of Maryland (2007).Google Scholar
Ejeckam, F., Francis, D., Faili, F., Lowe, F., Wilman, J., Mollart, T., Dodson, J., Twitchen, D., Bolliger, B., Babic, D., “GaN-on-Diamond: The Next GaN,” Microwave Journal, pp. 124134, May (2014).Google Scholar
Chu, K., Chao, P.C., Diaz, J., Yurovchak, T., Schmanski, B., Creamer, C., Sweetland, S., Kallaher, R., McGray, C., Via, G. D., Blevins, J. D., “High performance GaN-on-Diamond HEMTs fabricated by low-temperature device transfer process,” IEEE CSICS, pp. 14, (2015).Google Scholar
Dumka, D. C., Chou, T. M., Faili, F., Francis, D., and Ejeckam, F.. “AlGaN/GaN HEMTs on diamond substrate with over 7W/mm output power density at 10 GHz.” Electronics Letters, vol. 49, pp. 12981299 (2013).Google Scholar
Tyhach, M., Altman, D., Bernstein, S., Korenstein, R., Cho, J.-W., Goodson, K. E., Francis, D., Faili, F., Ejeckam, F., Kim, S., Graham, S., “S2-T3: Next generation gallium nitride HEMTs enabled by diamond substrates.” In IEEE Lester Eastman Conference on High Performance Devices (LEC) pp. 1–4 (2014).CrossRefGoogle Scholar
Pomeroy, J., Bernardoni, M., Sarua, A., Manoi, A., Dumka, D.C., Fanning, D.M., Kuball, M., “Achieving the best thermal performance for GaN-on-Diamond,” in CSICS (2013).Google Scholar
Bozorg-Grayeli, E., Sood, A., Asheghi, M., Gambin, V., Sandhu, R., Feygelson, T. I., Pate, B. B., Hobart, K., and Goodson, K. E.. “Thermal conduction inhomogeneity of nanocrystalline diamond films by dual-side thermoreflectance.” Applied Physics Letters, Vol. 102, no. 11, pp. 111907 (2013).CrossRefGoogle Scholar
Graebner, J.E., Jin, S., Kammlott, G.W., Herb, J.A., Gardinier, C.F.. “Large Anisotropic Thermal Conductivity in Synthetic Diamond Films.” Nature, Vol. 359 pp. 401403, (1992).CrossRefGoogle Scholar
Bar-Cohen, A., Maurer, J., Sivananthan, A., “Near-junction microfluidic thermal management of RF power amplifiers,” submitted IEEE COMCAS (2015).CrossRefGoogle Scholar
Tyhach, M., Altman, D., Bernstein, S., “GaN on Diamond Technology: Impact and Challenges of Next Generation GaN,” presented in ASME InterPACK (2015).Google Scholar
Dumka, D., Chou, T., Jimenez, J., Fanning, D., Francis, D., Faili, F., Ejeckam, F., Bernardoni, M., Pomeroy, J., Kuball, M., “Electrical and thermal performance of AlGaN/GaN HEMTs on diamond substrate for RF applications,” IEEE CSICS, pp. 14, (2013).Google Scholar
Altman, D., Tyhach, M., McClymonds, J., Kim, S., Graham, S., Cho, J., Goodson, K., Francis, D., Faili, F., Ejeckam, F., Bernstein, S., “Analysis and characterization of thermal transport in GaN HEMTs on diamond substrates,” IEEE iTHERM, pp. 11991205, (2014).Google Scholar
Dumka, D., Chou, T., “GaN-on-Diamond HEMTs: Road to maximum utilization of RF power capabilities of GaN,” presented in Lester Eastman Conference (2014).Google Scholar
Sandhu, R., Gambin, V., Poust, B., Smorchkova, I., Lewis, G., Elmadjian, R., Li, D., Geiger, C., Heying, B., Wojtowicz, M., Oki, A., Feygelson, T., Hobart, K., Pate, B., Tabeling, J., Bozorg-Grayeli, E., Goodson, K., “GaN HEMT near junction heat removal,” presented in CSManTech (2013).CrossRefGoogle Scholar
Poust, B., Gambin, V., Sandhu, R., Smorchkova, I., Lewis, G., Elmadjian, R., L, D.-J., Geiger, C., Heying, B., Wojtowicz, M., Oki, A., Pate, B.B., Feygelson, T., Hobart, K.. “Selective Growth of Diamond in Thermal Vias for GaN HEMTs.” IEEE Compound Semiconductor Integrated Circuit Symposium, pp. 14, (2013).Google Scholar
Tadjer, M., Hobart, K., Feygelson, T., Wang, A., Anderson, T., Koehler, A., Calle, F., Pate, B., Kub, F., Eddy, C., “Diamond-coated high density vias for silicon substrate-side thermal management of GaN HEMTs,” CS MANTECH, pp. 283286, (2014).Google Scholar
Bozorg-Grayeli, E., Sood, A., Asheghi, M., Gambin, V., Sandhu, R., Feygelson, T., Pate, B., Hobart, K., Goodson, K., “Thermal conduction inhomogeneity of nanocrystalline diamond films by dual-side thermoreflectance,” Applied Physics Letters 102 111907 (2013).Google Scholar
Kuball, M., Pomeroy, J., Calvo, J., Sun, H., Simon, R., Francis, D., Faili, F., Twitchen, D., Rossi, S., Alomari, M., Kohn, E., Toth, L., Pecz, B., “Novel thermal management of GaN electronics: diamond substrates,” presented in ASME InterPACK (2015).Google Scholar
Goodson, K., Agonafer, D., Asheghi, M., Barako, M., Cho, J., Gorle, C., Houshman, F., Liu, T., Palko, J., Santiago, J., Sood, A., Won, Y., Zhang, C., “Near junction transport and the limits of electronics cooling,” presented in ASME InterPACK (2015).Google Scholar
Ditri, J., Hahn, J., Cadotte, R., McNulty, M., Luppa, D., “Embedded cooling of high heat flux electronics utilizing distributed microfluidic impingement jets,” ASME InterPACK 2015 Proceedings (2015).CrossRefGoogle Scholar
Ditri, J., McNulty, M., Igoe, S., “Embedded microfluidic cooling of high heat flux electronic components,” Lester Eastman Conference, pp. 14, (2014).Google Scholar
Adams, C., “Cool It! Heat relief for RF power chips,” in Avionics Magazine (2015).Google Scholar
Gambin, V., Poust, B., Watanabe, M., Ferizovic, D., Oki, A., Wojtowicz, M., Hobart, K., Mandrusiak, G., “Impingement Cooled Embedded Diamond (ICED) GaN HEMTs,” Presented in ASME InterPACK (2015).Google Scholar
Altman, D., Gupta, A., Tyhach, M., “Development of a diamond microfluidics-based intra-chip cooling technology for GaN,” ASME InterPACK proceedings (2015).Google Scholar
Creamer, C., Chu, K., Chao, P.C., Schmanski, B., Yurovchak, T., Sweetland, S., “Microchannel cooled, high power GaN on Diamond MMIC,” Lester Eastman Conference, pp. 15, (2014).Google Scholar