Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-17T23:28:59.954Z Has data issue: false hasContentIssue false

A modelling approach to reconstruct Little Ice Age climate from remote-sensing glacier observations in southeastern Tibet

Published online by Cambridge University Press:  03 March 2016

Eva Huintjes*
Affiliation:
Department of Geography, RWTH Aachen University, Aachen, Germany
David Loibl
Affiliation:
Department of Geography, RWTH Aachen University, Aachen, Germany
Frank Lehmkuhl
Affiliation:
Department of Geography, RWTH Aachen University, Aachen, Germany
Christoph Schneider
Affiliation:
Department of Geography, RWTH Aachen University, Aachen, Germany
*
Correspondence: Eva Huintjes <eva.huintjes@geo.rwth-aachen.de>
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use numerical modelling of glacier mass balance combined with recent and past glacier extents to obtain information on Little Ice Age (LIA) climate in southeastern Tibet. We choose two glaciers that have been analysed in a previous study of equilibrium-line altitudes (ELA) and LIA glacier advances with remote-sensing approaches. We apply a physically based surface energy- and mass-balance model that is forced by dynamically downscaled global analysis data. The model is applied to two glacier stages mapped from satellite imagery, modern (1999) and LIA. Precipitation scaling factors (PSF) and air temperature offsets (ATO) are applied to reproduce recent ELA and glacier mass balance (MB) during the LIA. A sensitivity analysis is performed by applying seasonally varying gradients of precipitation and air temperature. The calculated glacier-wide MB estimate for the period 2000–12 is negative for both glaciers (–992±366 kgm–2 a–1 and –1053±258 kgm–2 a–1). Relating recent and LIA PSF/ATO sets suggests a LIA climate with ~8–25% increased precipitation and ~1–2.5°C lower mean air temperature than in the period 2000–12. The results only provide an order of magnitude because deviations in other input parameters are not considered.

Type
Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Author(s) 2016

Footnotes

*

Present address: Department of Geography, Humboldt Universität zu Berlin, Berlin, Germany.

References

Azam, MF and 6 others (2014) Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements. Cryosphere, 8(6), 21952217 (doi: 10.5194/tc-8-2195-2014)Google Scholar
Benn, DI and Lehmkuhl, F (2000) Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quat. Int., 65–66, 1529 (doi: 10.1016/S1040-6182(99)00034-8)Google Scholar
Bräuning, A (2006) Tree-ring evidence of Little Ice Age glacier advances in southern Tibet. Holocene, 16(3), 369380 (doi: 10.1191/0959683606hl922rp)Google Scholar
Bräuning, A and Lehmkuhl, F (1996) Glazialmorphologische und dendrochronologische Untersuchungen neuzeitlicher Eisrandlagen Ost- und Südtibets. Erdkunde, 50, 341359 CrossRefGoogle Scholar
Domrös, M and Peng, G (1988) The climate of China. Springer, Berlin Google Scholar
Gabbi, J, Carenzo, M, Pellicciotti, F, Bauder, A and Funk, M (2014) A comparison of empirical and physically based glacier surface melt models for long-term simulations of glacier response. J. Glaciol., 60(224), 11401154 (doi: 10.3189/2014JoG14J011)CrossRefGoogle Scholar
Gardelle, J, Berthier, E, Arnaud, Y and Kääb, A (2013a) Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere, 7(4), 12631286 (doi: 10.5194/tc-7-1263-2013)Google Scholar
Gardelle, J, Berthier, E, Arnaud, Y and Kääb, A (2013b) Corrigendum to ‘Region-wide glacier mass balances over the Pamir–Karakoram– Himalaya during 1999–2011’. Cryosphere 7(6), 18851886 (doi: 10.5194/tc-7-1885-2013)CrossRefGoogle Scholar
Gardner, AS and 16 others (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340(6134), 852857 (doi: 10.1126/science.1234532)Google Scholar
Grießinger, J, Bräuning, A, Helle, G, Thomas, A and Schleser, G (2011) Late Holocene Asian summer monsoon variability reflected by δ18O in tree-rings from Tibetan junipers. Geophys. Res. Lett., 38(3), 15 (doi: 10.1029/2010GL045988)Google Scholar
Heynen, M, Miles, E, Ragettli, S, Buri, P, Immerzeel, W and Pellicciotti, F (2016) Air temperature variability in a high elevation catchment of the central Himalaya. Ann. Glaciol., 57(71), 212222 (doi: 10.3189/2016AoG71A076) (see paper in this issue)Google Scholar
Huintjes, E and 11 others (2015a) Evaluation of a coupled snow and energy balance model for Zhadang glacier, Tibetan Plateau, using glaciological measurements and time-lapse photography. Arct. Antarct. Alp. Res. 47(3), 573590 (doi: 10.1657/AAAR0014-073)CrossRefGoogle Scholar
Huintjes, E, Neckel, N, Hochschild, V and Schneider, C (2015b) Surface energy and mass balance at Purogangri ice cap, central Tibetan Plateau, 2001–2011. J. Glaciol., 61(230), 10481060 (doi: 10.3189/2015JoG15J056)Google Scholar
Immerzeel, WW, Petersen, L, Ragettli, S and Pellicciotti, F (2014) The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Resour. Res., 50(3), 22122226 (doi: 10.1002/2013WR014506)Google Scholar
Juszak, I and Pellicciotti, F (2013) A comparison of parameterisations of incoming longwave radiation over melting glaciers: model robustness and seasonal variability. J. Geophys. Res. Atmos., 118, 120 (doi: 10.1002/jgrd.50277)CrossRefGoogle Scholar
Kattel, DB, Yao, T, Yang, K, Tian, L, Yang, G and Joswiak, D (2012) Temperature lapse rate in complex mountain terrain on the southern slope of the central Himalayas. Theor. Appl. Climatol., 113(3–4), 671682 (doi: 10.1007/s00704-012-0816-6)CrossRefGoogle Scholar
Klok, EJ and Oerlemans, J (2002) Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher, Switzerland. J. Glaciol., 48(163), 505518 (doi: 10.3189/172756502781831133)Google Scholar
Kumar, L, Skidmore, AK and Knowles, E (1997) Modelling topographic variation in solar radiation in a GIS environment. Int. J. Geogr. Inf. Sci., 11(5), 475497 (doi: 10.1080/136588197242266)Google Scholar
Loibl, D and Lehmkuhl, F (2014) Glaciers and equilibrium line altitudes of the eastern Nyainqêntanglha Range, SE Tibet. J. Maps, 11(4), 575588 (doi: 10.1080/17445647.2014.933451)Google Scholar
Loibl, D, Lehmkuhl, F and Grießinger, J (2014) Reconstructing glacier retreat since the Little Ice Age in SE Tibet by glacier mapping and equilibrium line altitude calculation. Geomorphology, 214, 2239 (doi: 10.1016/j.geomorph.2014.03.018)Google Scholar
Loibl, D and 6 others (2015) Toward a late Holocene glacial chronology for the eastern Nyainqêntanglha Range, southeastern Tibet. Quat. Sci. Rev., 107, 243259 (doi: 10.1016/j.quascirev.2014.10.034)Google Scholar
MacDougall, AH and Flowers, GE (2010) Spatial and temporal transferability of a distributed energy-balance glacier melt model. J. Climate, 24(5), 14801498 (doi: 10.1175/2010JCLI3821.1)CrossRefGoogle Scholar
MacDougall, AH, Wheler, BA and Flowers, GE (2011) A preliminary assessment of glacier melt-model parameter sensitivity and transferability in a dry subarctic environment. Cryosphere, 5(4), 10111028 (doi: 10.5194/tc-5-1011-2011)CrossRefGoogle Scholar
Maisch, M (1981) Glazialmorphologische und gletschergeschichtliche Untersuchungen im Gebiet zwischen Landwasser- und Albulatal (Kt. Graubunden, Schweiz). ZürichGoogle Scholar
Maussion, F, Scherer, D, Mölg, T, Collier, E, Curio, J and Finkelnburg, R (2014) Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J. Climate, 27(5), 19101927 (doi: 10.1175/JCLI-D-13-00282.1)Google Scholar
Mölg, T, Maussion, F, Yang, W and Scherer, D (2012) The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier. Cryosphere, 6(6), 14451461 (doi: 10.5194/tc-6-1445-2012)Google Scholar
Mölg, T, Maussion, F and Scherer, D (2014) Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nature Climate Change, 4(1), 6873 (doi: 10.1038/nclimate2055)CrossRefGoogle Scholar
Möller, M, Schneider, C and Kilian, R (2007) Glacier change and climate forcing in recent decades at Gran Campo Nevado, southernmost Patagonia. Ann. Glaciol., 46, 136144 (doi: 10.3189/172756407782871530)Google Scholar
Molnar, P, Boos, WR and Battisti, DS (2010) Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci., 38(1), 77102 (doi: 10.1146/annurev-earth-040809-152456)Google Scholar
Neckel, N, Kropáček, J, Bolch, T and Hochschild, V (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett., 9(1), 014009 (doi: 10.1088/1748-9326/9/1/014009)Google Scholar
Pfeffer, WT and 18 others (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60(221), 537552 (doi: 10.3189/2014JoG13J176)CrossRefGoogle Scholar
Rabus, B, Eineder, M, Roth, A, and Bamler, R (2003) The shuttle radar topography mission – a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens., 57, 241262 (doi: 10.1016/S0924-2716(02)00124-7)Google Scholar
Su, Z and Shi, Y (2002) Response of monsoonal temperate glaciers to global warming since the Little Ice Age. Quat. Int., 97–98, 123131 (doi: 10.1016/S1040-6182(02)00057-5)Google Scholar
Tshering, P and Fujita, K (2016) First in situ record of decadal glacier mass balance (2003–14) from the Bhutan Himalaya. Ann. Glaciol., 57(71), 289294 Google Scholar
Wernicke, J, Grießinger, J, Hochreuther, P and Bräuning, A (2014) Variability of summer humidity during the past 800 years on the eastern Tibetan Plateau inferred from δ18O of tree-ring cellulose. Climate Past Discuss. 10(4), 33273356 (doi: 10.5194/cpd-10-3327-2014)Google Scholar
Xu, X (2014) Climates during Late Quaternary glacier advances: glacier–climate modeling in the Yingpu Valley, eastern Tibetan Plateau. Quat. Sci. Rev., 101, 1827 (doi: 10.1016/j.quascirev.2014.07.007)Google Scholar
Xu, X and Yi, C (2014) Little Ice Age on the Tibetan Plateau and its bordering mountains: evidence from moraine chronologies. Global Planet. Change, 116, 4153 (doi: 10.1016/j.gloplacha.2014.02.003)Google Scholar
Yang, B, Bräuning, A, Dong, Z, Zhang, Z and Keqing, J (2008) Late Holocene monsoonal temperate glacier fluctuations on the Tibetan Plateau. Global Planet. Change, 60(1–2), 126140 (doi: 10.1016/j.gloplacha.2006.07.035)Google Scholar
Yang, W and 6 others (2011) Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier. J. Geophys. Res., 116(D14), D14116 (doi: 10.1029/2010JD015183)Google Scholar
Yang, W, Yao, T, Guo, X, Zhu, M, Li, S and Kattel, DB (2013) Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. J. Geophys. Res. Atmos., 118(17), 95799594 (doi: 10.1002/jgrd.50760)Google Scholar
Yao, T and 14 others (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9), 663667 (doi: 10.1038/nclimate1580)Google Scholar
Zheng, B, Zhao, X, Li, T and Wang, C (1999) Features and fluctuation of the Melang Glacier in the Mainri Mountain. J. Glaciol. Geocryol., 21, 145150 Google Scholar
Zhou, SZ, Chen, FH, Pan, BT, Cao, JX, Li, JJ and Derbyshire, E (1991) Environmental change during the Holocene in western China on a millennial timescale. Holocene, 1(2), 151156 (doi: 10.1177/095968369100100207)Google Scholar
Zhu, H-F, Shao, X-M, Yin, Z-Y, Xu, P, Xu, Y and Tian, H (2011) August temperature variability in the southeastern Tibetan Plateau since AD 1385 inferred from tree rings. Palaeogeogr., Palaeoclimatol., Palaeoecol., 305(1–4), 8492 (doi: 10.1016/j.palaeo.2011.02.017)Google Scholar
Zhu, H, Xu, P, Shao, X and Luo, H (2013) Little Ice Age glacier fluctuations reconstructed for the southeastern Tibetan Plateau using tree rings. Quat. Int., 283, 134–138 (doi: 10.1016/j.quaint.2012.04.011)Google Scholar