Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-18T13:36:54.743Z Has data issue: false hasContentIssue false

Theoretical modeling of convection I. Key physical processes

Published online by Cambridge University Press:  01 August 2006

V. M. Canuto*
Affiliation:
NASA, Goddard Institute for Space Studies, New York, NY 10025, USA email: vcanuto@giss.nasa.gov Dept. of Applied Math. and Physics, Columbia University, New York, NY, 10027
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If one strives for a reliable description of “Turbulent Mixing in Stars” one must account for a large variety of physical processes. These include non-locality, that is needed in unstably stratified regimes, overshooting, which occurs in a stably stratified regime, double-diffusion processes (semi-convection and salt-fingers), transport of angular momentum, the Li7 problem, compressibility, and magnetic fields. While phenomenological models are manifestly inadequate, LES are too computer intensive to tackle this large variety of processes. Since the requirement of completeness of the description of these processes must also result in models that are usable in stellar structure-evolution codes, we conclude that only the RSM (Reynolds Stress Model) can do so and a description of the state of the art in that field is presented in Part 2.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Abarbanel, H.D., Holm, D.D., Marsden, J. E. & Ratiu, T. 1984, Phys. Rev. Lett. 52, 2352CrossRefGoogle Scholar
Althaus, L.G. & Benvenuto, O.G. 1996, MNRAS 278, 981CrossRefGoogle Scholar
Anderson, J., Nordstrom, B. & Clausen, J.V. 1990, ApJ 363, L33CrossRefGoogle Scholar
Asplund, M., Ludwig, H.-G., Nordlund, Å. & Stein, R.F. 2000, A&A 359, 669Google Scholar
Brummel, N.H., Hurlburt, N.E. & Toomre, J. 1996, ApJ 473, 494CrossRefGoogle Scholar
Brun, A.S. & Toomre, J. 2002, ApJ 570, 865Google Scholar
Brun, A.S., Miesch, M.S. & Toomre, J. 2004, ApJ 614, 1073CrossRefGoogle Scholar
Canuto, V.M. 1992, ApJ 392, 218Google Scholar
Canuto, V.M. 1994, ApJ 428, 279CrossRefGoogle Scholar
Canuto, V.M. 1996, ApJ 467, 385CrossRefGoogle Scholar
Canuto, V.M. 1997, ApJ 478, 322Google Scholar
Canuto, V.M. 1999, ApJ 524, 311Google Scholar
Canuto, V.M. 2007, IAU Symposium 239, ed. by Kupka, F., Roxburgh, I.W. and Chan, K.L., Cambridge Univ. Press, Part 2 (these proceedings)Google Scholar
Canuto, V.M. & Goldman, I. 1985, Phys. Rev. Lett. 54, 430CrossRefGoogle Scholar
Canuto, V.M. & Hartke, G.J. 1986, A&A 168, 89Google Scholar
Canuto, V.M., Goldman, I. & Chasnov, J. 1987, Phys. Fluids 30, 339Google Scholar
Canuto, V.M. & Mazzitelli, I. 1991, ApJ 370, 295CrossRefGoogle Scholar
Canuto, V.M. and Dubovikov, M.S. 1998, ApJ 493, 834CrossRefGoogle Scholar
Canuto, V.M. & Christensen-Dalsgaard, J. 1998, Ann Rev. Fluid Mech. 30, 167CrossRefGoogle Scholar
Canuto, V.M. & Minotti, F. 2001, MNRAS 328, 829CrossRefGoogle Scholar
Canuto, V.M., Howard, A., Cheng, Y. & Dubovikov, M.S. 2001, J. Phys. Oceanogr. 31, 14132.0.CO;2>CrossRefGoogle Scholar
Canuto, V.M., Howard, A., Cheng, Y. & Dubovikov, M.S. 2002, J. Phys. Oceanogr. 32, 2402.0.CO;2>CrossRefGoogle Scholar
Cattaneo, F., Brummell, N.H., Toomre, J., Malagoli, A. & Hurlburt, N.E. 1991, ApJ 370, 282CrossRefGoogle Scholar
Chaboyer, B. & Zahn, J.-P. 1992, A&A 253, 173Google Scholar
Chan, K.L. & Gigas, D. 1992, ApJ 389, L87CrossRefGoogle Scholar
Chapman, S. 1954, ApJ 120, 151CrossRefGoogle Scholar
Charbonnel, C. 2006, Nature 442, 636CrossRefGoogle Scholar
Cox, J.P. & Giuli, R.T. 1968, Principles of Stellar Structure, Gordon and Breach, N.Y.Google Scholar
D'Antona, F. & Mazzitelli, I. 1996, ApJ 470, 1093Google Scholar
Deardorff, J.W. 1972, J. Geophys. Res. 77, 5900Google Scholar
Eggleton, P.P. 1971, MNRAS 151, 351CrossRefGoogle Scholar
Eggleton, P.P. 1972, MNRAS 156, 361CrossRefGoogle Scholar
Elliott, J.R., Miesch, M.S. & Toomre, J. 2000, ApJ 533, 546CrossRefGoogle Scholar
Golystin, G.S. 1980, Dokl. Akad. Nauk SSSR 251, 1356Google Scholar
Gough, D.O. & Weiss, N.O. 1976, MNRAS 176, 589Google Scholar
Grossman, S.A. & Taam, R.E. 1996, MNRAS 283, 1165CrossRefGoogle Scholar
Holtslag, A.A.M. & Boville, B.A. 1993, J. Climate. 6, 1825Google Scholar
Holtslag, A.A.M. & Moeng, C.-H. 1991, J. Atmos. Sci. 48, 16902.0.CO;2>CrossRefGoogle Scholar
Howard, L.N. 1961, J. Fluid Mech. 10, 509Google Scholar
Kippenhahn, R., Ruschenplatt, G. & Thomas, H.C. 1980, A&A 91, 175Google Scholar
Korn, A.J., Grundahl, F., Richard, O., Barklem, P.S., Mashonkina, L., Collet, R., Piskunov, N. & Gustafsson, B. 2006, Nature 442, 657CrossRefGoogle Scholar
Kumar, P., Talon, S. & Zahn, J.-P. 1999, ApJ 520, 859CrossRefGoogle Scholar
Langer, N., El Eid, M.F. & Baraffe, I. 1989, A&A 224, L17Google Scholar
Langer, N., Sugimoto, D. & Fricke, K. 1983, A&A 126, 207Google Scholar
Langer, N., El Eid, M.F. & Fricke, K. 1985, A&A 145, 179Google Scholar
Ledoux, P. 1947, ApJ 105, 305CrossRefGoogle Scholar
Maeder, A. 1995, A&A 299, 84Google Scholar
Maeder, A. & Meynet, G. 1996, A&A 313, 140Google Scholar
McComb, W.D. 1990, The Physics of Fluid Turbulence, Clarendon, Oxford, UKCrossRefGoogle Scholar
Merryfield, W.J. 1995, ApJ 444, 318Google Scholar
Miesch, M.S., Elliott, J.R., Toomre, J., Clune, T.L., Glatzmeier, G.A. & Gilman, P.A. 2000, ApJ 532, 593CrossRefGoogle Scholar
Miles, J.W., 1961, J. Fluid Mech. 10, 496Google Scholar
Pinsonneault, M.H., Kawaler, S.D., Sofia, S. & Demarque, P. 1989, ApJ 338, 424Google Scholar
Robinson, F.J., Demarque, P., Li, L.H., Sofia, S., Kim, Y.-C., Chan, K.L. & Guenther, D.B. 2003, MNRAS 340, 923CrossRefGoogle Scholar
Rosenthal, C.S., Christensen-Dalsgaard, J., Nordlund, Å., Stein, R.F. & Trampedach, R. 1999, A&A 351, 689Google Scholar
Roxburgh, I. 1978, A&A 65, 281Google Scholar
Roxburgh, I. 1989, A&A 211, 361Google Scholar
Rudiger, G. 1989, Differential Rotation and Stellar Convection, Gordon and Breach, N.Y.Google Scholar
Sakashita, S. & Hayashi, C. 1959, Prog. Theor. Phys. 22, 830CrossRefGoogle Scholar
Salasnich, B., Bressan, A. & Chiosi, C. 1998, A&A 342, 131Google Scholar
Samadi, R., Kupka, F., Goupil, M.J., Lebreton, Y. & van't Veer-Menneret, C. 2006, A&A 445, 233Google Scholar
Schatzman, E., Zahn, J.-P. & Morel, P. 2000, A&A 364, 876Google Scholar
Schmitt, R.W. 1994, Ann. Rev. Fluid Mech. 26, 255Google Scholar
Schwarzschild, M. & Harm, R. 1958, ApJ 128, 348Google Scholar
Spiegel, E.A. 1972, ARAA 10, 261Google Scholar
Spiegel, E.A. & Zahn, J.-P. 1992, A&A 265, 106Google Scholar
Spruit, H.C. 1992, A&A 253, 131Google Scholar
Stein, R.F. & Nordlund, Å. 1998, ApJ 499, 914Google Scholar
Stevenson, D.J. 1979, MNRAS 187, 129CrossRefGoogle Scholar
Stothers, R. 1970, MNRAS 151, 65Google Scholar
Stothers, R. & Chin, C.W. 1975, ApJ 198, 407Google Scholar
Stothers, R. & Chin, C.W. 1976, ApJ 204, 472Google Scholar
Stothers, R. & Simon, N.R. 1969, ApJ 157, 673Google Scholar
Talon, S. & Zahn, J.-P. 1997, A&A 317, 749Google Scholar
Thomas, H.-C. 1967, ZfA 67, 420Google Scholar
Tomczyk, S., Schou, J. & Thompson, M.J. 1995, ApJ 448, L57Google Scholar
Ulrich, R.K. 1972, ApJ 172, 165Google Scholar
Umezu, M. 1998, MNRAS 298, 193CrossRefGoogle Scholar
Wedemeyer, S., Freytag, B., Steffen, M., Ludwig, H.-G. & Holweger, H. 2004, A&A 414, 1121Google Scholar
Woods, J.D. 1969, Radio Science 4, 1289Google Scholar
Woosley, S.E., Heger, A., Weaver, T.A. & Langer, N. 1999, in SN 1987A: Ten Years After, ed. Phillips, M.M.Google Scholar
Xiong, D.R. 1985a, Sci. Sinica 28, 764Google Scholar
Xiong, D.R. 1985b, A&A 150, 133Google Scholar
Xiong, D.R. 1986, A&A 167, 239Google Scholar
Zahn, J.-P. 1974, in Stellar Instability and Evolution, ed. Ledoux, P., Noels, A., Rodgers, W. (Dordrecht, Reidell), IAU Symp. 59, 185CrossRefGoogle Scholar
Zahn, J.-P. 1992, A&A 265, 115Google Scholar