Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T02:21:12.647Z Has data issue: false hasContentIssue false

ON SMALL BASES FOR WHICH 1 HAS COUNTABLY MANY EXPANSIONS

Published online by Cambridge University Press:  22 January 2016

Yuru Zou
Affiliation:
College of Mathematics and Computational Science, Shenzhen University, Shenzhen 518060, China email yrzou@163.com
Lijin Wang
Affiliation:
College of Mathematics and Computational Science, Shenzhen University, Shenzhen 518060, China email ljwang1989@126.com
Jian Lu
Affiliation:
College of Mathematics and Computational Science, Shenzhen University, Shenzhen 518060, China email jianlu1979@163.com
Simon Baker
Affiliation:
School of Mathematics, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K. email simonbaker412@gmail.com
Get access

Abstract

Let $q\in (1,2)$. A $q$-expansion of a number $x$ in $[0,1/(q-1)]$ is a sequence $({\it\delta}_{i})_{i=1}^{\infty }\in \{0,1\}^{\mathbb{N}}$ satisfying

$$\begin{eqnarray}x=\mathop{\sum }_{i=1}^{\infty }\frac{{\it\delta}_{i}}{q^{i}}.\end{eqnarray}$$
Let ${\mathcal{B}}_{\aleph _{0}}$ denote the set of $q$ for which there exists $x$ with a countable number of $q$-expansions, and let ${\mathcal{B}}_{1,\aleph _{0}}$ denote the set of $q$ for which $1$ has a countable number of $q$-expansions. In Erdős et al [On the uniqueness of the expansions $1=\sum _{i=1}^{\infty }q^{-n_{i}}$. Acta Math. Hungar.58 (1991), 333–342] it was shown that $\min {\mathcal{B}}_{\aleph _{0}}=\min {\mathcal{B}}_{1,\aleph _{0}}=(1+\sqrt{5})/2$, and in S. Baker [On small bases which admit countably many expansions. J. Number Theory147 (2015), 515–532] it was shown that ${\mathcal{B}}_{\aleph _{0}}\cap ((1+\sqrt{5})/2,q_{1}]=\{q_{1}\}$, where $q_{1}\,({\approx}1.64541)$ is the positive root of $x^{6}-x^{4}-x^{3}-2x^{2}-x-1=0$. In this paper we show that the second smallest point of ${\mathcal{B}}_{1,\aleph _{0}}$ is $q_{3}\,({\approx}1.68042)$, the positive root of $x^{5}-x^{4}-x^{3}-x+1=0$. En route to proving this result, we show that ${\mathcal{B}}_{\aleph _{0}}\cap (q_{1},q_{3}]=\{q_{2},q_{3}\}$, where $q_{2}\,({\approx}1.65462)$ is the positive root of $x^{6}-2x^{4}-x^{3}-1=0$.

Type
Research Article
Copyright
Copyright © University College London 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, S., Generalized golden ratios over integer alphabets. Integers 14 2014, Paper No. A15.Google Scholar
Baker, S., On small bases which admit countably many expansions. J. Number Theory 147 2015, 515532.Google Scholar
Baker, S. and Sidorov, N., Expansions in non-integer bases: lower order revisited. Integers 14 2014, Paper No. A57.Google Scholar
Dajani, K. and Kraaikamp, C., Random 𝛽-expansions. Ergodic Theory Dynam. Systems 23 2003, 461479.CrossRefGoogle Scholar
Dajani, K. and de Vries, M., Measures of maximal entropy for random 𝛽-expansions. J. Eur. Math. Soc. 7 2005, 5168.CrossRefGoogle Scholar
Dajani, K. and de Vries, M., Invariant densities for random 𝛽-expansions. J. Eur. Math. Soc. 9 2007, 157176.CrossRefGoogle Scholar
Daróczy, Z. and Kátai, I., Univoque sequences. Publ. Math. Debrecen 42 1993, 397407.Google Scholar
Daróczy, Z. and Kátai, I., On the structure of univoque numbers. Publ. Math. Debrecen 46 1995, 385408.Google Scholar
Erdős, P., Horváth, M. and Joó, I., On the uniqueness of the expansions 1 =∑ i=1 q n i . Acta Math. Hungar. 58 1991, 333342.Google Scholar
Erdős, P. and Joó, I., On the number of expansions 1 =∑ q n i . Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 35 1992, 129132.Google Scholar
Erdős, P. and Joó, I., On the number of expansions 1 =∑ q n i , II. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 36 1993, 229233.Google Scholar
Erdős, P., Joó, I. and Komornik, V., Characterization of the unique expansions 1 =∑ i=1 q n i and related problems. Bull. Soc. Math. France 118 1990, 377390.CrossRefGoogle Scholar
Glendinning, P. and Sidorov, N., Unique representations of real numbers in non-integer bases. Math. Res. Lett. 8 2001, 535543.Google Scholar
Komornik, V. and Loreti, P., Unique developments in non-integer bases. Amer. Math. Monthly 105 1998, 636639.Google Scholar
Parry, W., On the 𝛽-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 1960, 401416.CrossRefGoogle Scholar
Sidorov, N., Almost every number has a continuum of 𝛽-expansions. Amer. Math. Monthly 110 2003, 838842.Google Scholar
Sidorov, N., Ergodic-theoretic properties of certain Bernoulli convolutions. Acta Math. Hungar. 101 2003, 345355.CrossRefGoogle Scholar
Sidorov, N., Expansions in non-integer bases: lower, middle and top orders. J. Number Theory 129 2009, 741754.Google Scholar
de Vries, M. and Komornik, V., Unique expansions of real numbers. Adv. Math. 221 2009, 390427.Google Scholar
Zou, Y. R., Lu, J. and Li, W. X., Unique expansion of points of a class of self-similar sets with overlaps. Mathematika 58 2012, 371–388.CrossRefGoogle Scholar