Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T21:21:09.368Z Has data issue: false hasContentIssue false

Use of expressed sequence tag microsatellite markers for exploring genetic diversity in lentil and related wild species

Published online by Cambridge University Press:  14 January 2016

A. SINGH
Affiliation:
Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India
H. K. DIKSHIT*
Affiliation:
Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India
D. SINGH
Affiliation:
Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India
N. JAIN
Affiliation:
Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India
M. ASKI
Affiliation:
Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India
A. SARKER
Affiliation:
ICARDA, South Asia and China Regional Program, CGIAR Block, NASC Complex, New Delhi-110012, India
T. R. SHARMA
Affiliation:
National Research Centre for Plant Biotechnology, Pusa Campus, New Delhi-110012, India
*
*To whom all correspondence should be addressed. Email: hk_dikshit@rediffmail.com

Summary

Expressed sequence tag-simple sequence repeat (EST-SSR) markers were used to analyse genetic diversity among three Lens species. The SSR loci amplified successfully in wild species, with 94·82% transferability in Lens culinaris subsp. orientalis, 95·4% in Lens nigricans, 98·81% in L. culinaris subsp. odemensis, 94·82% in L. culinaris subsp. tomentosus and 96·55% in Lens ervoides. Ninety-nine alleles (average 3·41 alleles/locus) were detected by 29 SSR markers. Based on the unweighted pair group method with arithmetic mean cluster analysis, all the genotypes were grouped into three clusters at a similarity level of 0·30. The diversity analysis indicated no species-specific clustering of the wild and cultivated species. Wild species L. nigricans and L. culinaris subsp. odemensis, L. culinaris subsp. orientalis and L. ervoides were grouped in Cluster I, whereas the Mediterranean land races of L. culinaris subsp. culinaris and L. culinaris subsp. tomentosus formed a separate group in Cluster II A. Cluster II B comprised L. ervoides, L. culinaris subsp. orientalis and L. culinaris subsp. culinaris. Clusters II C, II D and II F included cultivated Indian lentil genotypes. Cluster II E comprised Indian and Mediterranean germplasm lines. Cluster II F included three early maturing germplasm lines, whereas Cluster III included only two germplasm lines. The functional annotation of SSR-containing unigenes revealed that a majority of genes were involved in an important transport-related function or were a component of metabolic pathways. A high level of polymorphism of EST-SSRs and their transferability to related wild species indicated that these markers could be used for molecular screening, map construction, comparative genomic studies and marker-assisted selection.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abo-elwafa, A., Murai, K. & Shimada, T. (1995). Intra- and inter-specific variations in Lens revealed by RAPD markers. Theoretical and Applied Genetics 90, 335340.Google Scholar
Agrawal, P. K. & Katiyar, A. K. (2008). Validation of chickpea-STMS markers and DNA fingerprinting in lentil (Lens culinaris subsp. culinaris) cultivars of India. Indian Journal of Genetics and Plant Breeding 68, 149156.Google Scholar
Ali, A., Keatinge, J. D. H., Khan, B. R. & Ahmad, S. (1991). Germplasm evaluation of dual-season lentil (Lens culinaris) lines for the arid highlands of west Asia. The Journal of Agricultural Science, Cambridge 117, 347353.CrossRefGoogle Scholar
Almeida, N. F., Leitao, S. T., Caminero, C., Torres, A. M., Rubiales, D. & VazPatto, M. C. (2014). Transferability of molecular markers from major legumes to Lathyrus spp. for their application in mapping and diversity studies. Plant Molecular Biology Reporter 41, 269283.CrossRefGoogle ScholarPubMed
Arumuganathan, K. & Earle, E. D. (1991). Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9, 208218.Google Scholar
Bakhsh, A., Zubair, M. & Ghafoor, A. (1991). Character correlation and path analysis in lentil. Pakistan Journal Agricultural Research 12, 246251.Google Scholar
Barulina, H. I. (1930). Lentils of the USSR and other countries. Bulletin of Applied Botany, Genetics and Plant Breeding (Leningrad) (Supplement) 40, 265304.Google Scholar
Bhat, P. R., Krishna, K. V., Hendre, P. S., Rajendrakumar, P., Varshney, R. K. & Aggrawal, R. K. (2005). Identification and characterization of expressed sequence tags-derived simple sequence repeats, markers from robusta coffee variety ‘C × R’ (an interspecific hybrid of Coffeacanephora × Coffeacongensis). Molecular Ecology Notes 5, 8083.Google Scholar
Bhatty, R. S. (1988). Composition and quality of lentil (Lens culinaris Medik.): a review. Canadian Institute of Food Science and Technology Journal 21, 144160.Google Scholar
Blair, M. W., Hurtado, N., Chavarro, C. M., Muñoz-Torres, M. C., Giraldo, M. C., Pedraza, F., Tomkins, J. & Wing, R. (2011). Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: an integration of the BMC series. BMC Plant Biology 11, 50. doi: 10.1186/1471–2229-11-50.Google Scholar
Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32, 314331.Google Scholar
Chagne, D., Chaumeil, P., Ramboer, A., Collada, C., Guevara, A., Cervera, M. T., Vendramin, G. G., Garcia, V., Frigerio, J-M., Echt, C., Richardson, T. & Plomion, C. (2004). Cross species transferability and mapping of genomic and cDNA SSRs in pines. Theoretical and Applied Genetics 109, 12041214.Google Scholar
Choudhary, S., Sethy, N. K., Shokeen, B. & Bhatia, S. (2009). Development of chickpea EST SSR markers and analysis of allelic variation across related species. Theoretical and Applied Genetics 118, 591608.Google Scholar
Choumane, W., Winter, P., Baum, M. & Kahl, K. (2004). Conservation of microsatellite flanking sequences in different taxa of Leguminosae . Euphytica 138, 239245.Google Scholar
Datta, S., Kaashyap, M. & Kumar, S. (2010 a). Amplification of chickpea-specific SSR primers in Cajanus species and their validity in diversity analysis. Plant Breeding 129, 334340.CrossRefGoogle Scholar
Datta, S., Mahfooz, S., Singh, P., Choudhary, A. K., Singh, F. & Kumar, S. (2010 b). Cross-genera amplification of informative microsatellite markers from common bean and lentil for the assessment of genetic diversity in pigeonpea. Physiology and Molecular Biology of Plants 16, 123134.Google Scholar
Datta, S., Kaashyap, M., Singh, P., Gupta, P., Anjum, K. T., Mahfooz, S. & Gupta, S. (2012). Conservation of microsatellite regions across legume genera enhances marker repertoire and genetic diversity study in Phaseolus genotypes. Plant Breeding 131, 307311.Google Scholar
Datta, S., Mahfooz, S., Singh, P., Choudhary, A. K., Chaturvedi, S. K. & Nadarajan, N. (2013). Conservation of microsatellite regions across legume genera increases marker repertoire in pigeon pea. Australian Journal of Crop Science 7, 19901997.Google Scholar
Decroocq, V., Fave, M. G., Hagen, L., Bordenave, L. & Decroocq, S. (2003). Development and transferability of apricot and grape EST microsatellite markers across taxa. Theoretical and Applied Genetics 106, 912922.CrossRefGoogle ScholarPubMed
DeWoody, J. A., Honeycutt, R. L. & Skow, L. C. (1995). Microsatellite markers in white-tailed deer. Journal of Heredity 86, 317319.Google Scholar
Dikshit, H. K., Singh, D., Singh, A., Jain, N., Kumari, J. & Sharma, T. R. (2012). Utility of adzuki bean [Vigna angularis (Willd.) Ohwi&Ohashi] simple sequence repeat (SSR) markers in genetic analysis of mungbean and related Vigna spp. African Journal of Biotechnology 11, 1326113268.Google Scholar
Duran, Y. & de la Vega, M. P. (2004). Assessment of genetic variation and species relationships in a collection of Lens using RAPD and ISSR. Spanish Journal of Agricultural Research 2, 538544.CrossRefGoogle Scholar
Duran, Y., Fratini, R., Garcia, P. & de la Vega, M. P. (2004). An intersubspecific genetic map of Lens . Theoretical and Applied Genetics 108, 12651273.Google Scholar
Erskine, W. (1997). Lessons for breeders from land races of lentil. Euphytica 93, 107112.Google Scholar
Erskine, W. & Witcombe, J. R. (1984). 100 seed weight. In Lentil Germplasm Catalog (Ed. Erskine, W.), p. 45. Aleppo, Syria: ICARDA.Google Scholar
Erskine, W., Adham, Y. & Holly, L. (1989). Geographic distribution of variation in quantitative traits in a world lentil collection. Euphytica 43, 97103.Google Scholar
Erskine, W., Chandra, S., Chaudhary, M., Malik, I. A., Sarker, A., Sharma, B., Tufail, M. & Tyagi, M. C. (1998). A bottleneck in lentil: Widening its genetic base in South Asia. Euphytica 101, 207211.Google Scholar
Erskine, W., Rihawi, S. & Capper, B. S. (1990). Variation in lentil straw quality. Animal Feed Science and Technology 28, 6169.Google Scholar
Eujayl, I., Baum, M., Powel, W., Erskine, W. & Pehu, E. (1998 a). A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theoretical and Applied Genetics 97, 8389.Google Scholar
Eujayl, I., Erskine, W., Bayaa, B., Baum, M. & Pehu, E. (1998 b). Fusarium vascular wilt in lentil: inheritance and identification of DNA markers for resistance. Plant Breeding 117, 497499.Google Scholar
Eujayl, I., Sledge, M. K., Wang, L., May, G. D., Chekhovskiy, K., Zwonitzer, J. C. & Mian, M. A. R. (2004). Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theoretical and Applied Genetics 108, 414422.Google Scholar
Fan, L., Zhang, M. Y., Liu, Q. Z., Li, L. T., Song, Y., Wang, L. F., Zhang, S. L. & Wu, J. (2013). Transferability of newly developed pear SSR markers in other Rosaceae species. Plant Molecular Biology Reporter 31, 12711282.Google Scholar
FAO (2014). FAOSTAT. Rome: FAO. Available from: http://faostat3.fao.org/home/E (verified 6 November 2015).Google Scholar
Ferguson, M. E., Newbury, H. J., Maxted, N., Ford-Lloyd, B. V. & Robertson, L. D. (1998 a). Population genetic structure in Lens taxa revealed by isozyme and RAPD analysis. Genetic Resources and Crop Evolution 45, 549559.Google Scholar
Ferguson, M. E., Robertson, L. D., Ford-Lloyd, B. V., Newbury, H. J. & Maxted, N. (1998 b). Contrasting genetic variation amongst lentil landraces from different geographical origins. Euphytica 102, 265273.Google Scholar
Fikiru, E., Tesfaye, K. & Bekele, E. (2007). Genetic diversity and population structure of Ethiopian lentil (Lens culinaris Medikus) landraces as revealed by ISSR markers. African Journal of Biotechnology 6, 14601468.Google Scholar
Ford, R., Pang, E. C. K. & Taylor, P. W. J. (1997). Diversity analysis and species identification in Lens using PCR generated markers. Euphytica 96, 247255.Google Scholar
Fu, D., Uauy, C., Distelfeld, A., Blechl, A., Epstein, L., Chen, X., Sela, H., Fahima, T. & Dubcovsky, J. (2009). A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323, 13571360.Google Scholar
Gamuyao, R., Chin, J. H., Pariasca-Tanaka, J., Pesaresi, P., Catausan, S., Dalid, C., Slamet-Loedin, I., Tecson- Mendoza, E. M., Wissuwa, M. & Heuer, S. (2012). The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488, 535539.CrossRefGoogle ScholarPubMed
Gasic, K., Han, Y., Kertbundit, S., Shulaev, V., Iezzoni, A. F., Stover, E. W., Bell, R. L., Wisniewski, M. E. & Korban, S. S. (2009). Characteristic and transferability of new apple EST-derived SSRs to the Rosaceae species. Molecular Breeding 23, 397411.Google Scholar
Gong, Y. M., Xu, S. C., Mao, W. H., Hu, Q. Z., Zhang, G. W., Ding, J. & Li, Y. D. (2010). Developing new SSR markers from ESTs of pea (Pisum sativum L.). Journal of Zhejiang University –Science B (Biomedicine and Biotechnology) 11, 702707.Google Scholar
Gupta, D. & Sharma, S. K. (2006). Evaluation of wild Lens taxa for agro morphological traits, fungal diseases and moisture stress in North-western Indian Hills. Genetic Resources and Crop Evolution 53, 12331241.Google Scholar
Gupta, P. K., Rustgi, S., Sharma, S., Singh, R., Kumar, N. & Balyan, H. S. (2003). Transferable EST SSR markers for the study of polymorphism and genetic diversity in bread wheat. Molecular Genetics and Genomics 270, 315323.Google Scholar
Gutierrez, M. V., VazPatto, M. C., Huguet, T., Cubero, J. I., Moreno, M. T. & Torres, A. M. (2005). Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theoretical and Applied Genetics 110, 12101217.Google Scholar
Harjes, C. E., Rocheford, T. R., Bai, L., Brutnell, T. P., Kandianis, C. B., Sowinski, S. G., Stapleton, A. E., Vallabhaneni, R., Williams, M., Wurtzel, E. T., Yan, J. & Buckler, E. S. (2008). Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319, 330333.Google Scholar
Havey, M. J. & Muehlbauer, F. J. (1989). Linkages between restriction fragment length, isozyme and morphological markers in lentil. Theoretical and Applied Genetics 77, 395401.Google Scholar
Hougaard, B. K., Madsen, L. H., Sandal, N., de Carvalho Moretzsohn, M., Fredslund, J., Schauser, L., Nielsen, A. M., Rohde, T., Sato, S., Tabata, S., Bertioli, D. J. & Stougaard, J. (2008). Legume anchor markers link syntenic regions between Phaseolus vulgaris, Lotus japonicus, Medicagotruncatula and Arachis . Genetics 179, 22992312.Google Scholar
Huang, X. & Madan, A. (1999). CAP3: a DNA sequence assembly program. Genome Research 9, 868877.Google Scholar
Huang, X. Q., Wang, L. X., Xu, M. X. & Röder, M. S. (2003). Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics 106, 858865.Google Scholar
Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., Li, C., Zhu, C., Lu, T., Zhang, Z., Li, M., Fan, D., Guo, Y., Wang, A., Wang, L., Deng, L., Li, W., Lu, Y., Weng, Q., Liu, K., Huang, T., Zhou, T., Jing, Y., Li, W., Lin, Z., Buckler, E. S., Qian, Q., Zhang, Q. F., Li, J. & Han, B. (2010). Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics 42, 961967.Google Scholar
Hufford, M. B., Xu, X., Van Heerwaarden, J., Pyhäjärvi, T., Chia, J. M., Cartwright, R., Elshire, R. J., Glaubitz, J. C., Guill, K. E., Kaeppler, S. M., Lai, J., Morrell, P. L., Shannon, L. M., Song, C., Springer, N. M., Swanson-Wagner, R. A., Tiffin, P., Wang, J., Zhang, J., Doebley, J., McMullen, M. D., Ware, D., Buckler, E. S., Yang, S. & Ross-Ibarra, J. (2012). Comparative population genomics of maize domestication and improvement. Nature Genetics 44, 808811.CrossRefGoogle ScholarPubMed
Imai, I., Kimball, J. A., Conway, B., Yeater, K. M., McCouch, S. R. & McClung, A. (2013). Validation of yield-enhancing quantitative trait loci from a low-yielding wild ancestor of rice. Molecular Breeding 32, 101120.Google Scholar
Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Societe Vaudoise Sciences Naturelles 44, 223270.Google Scholar
Jayashree, B., Punna, R., Prasad, P., Bantte, K., Hash, C. T., Chandra, S., Hoisington, D. A. & Varshney, R. K. (2006). A database of simple sequence repeats from cereal and legume expressed sequence tags mined in silico: survey and evaluation. In Silico Biology 6, 607620.Google Scholar
Kahraman, A., Kusmenoglu, I., Aydin, N., Aydogan, A., Erskine, W. & Muehlbauer, F. J. (2004). QTL mapping of winter hardiness genes in lentil. Crop Science 44, 1322.Google Scholar
Kalo, P., Seres, A., Taylor, S. A., Jakab, J., Kevei, Z., Kereszt, A., Endre, G., Ellis, T. H. N. & Kiss, G. B. (2004). Comparative mapping between Medicago sativa and Pisum sativum . Molecular Genetics and Genomics 272, 235246.Google Scholar
Krieger, U., Lippman, Z. B. & Zamir, D. (2010). The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nature Genetics 42, 459463.Google Scholar
Kumar, S., Gupta, S., Chandra, S. & Singh, B. B. (2004). How wide is the genetic base of pulse crops? In Pulses in New Perspectives (Eds Ali, M., Singh, B. B., Kumar, S. & Dhar, V.), pp. 211221. Kanpur, India: Indian Society of Pulses Research and Development.Google Scholar
Kushwaha, U. K. S., Ghimire, S. K., Yadav, N. K., Ojha, B. R. & Niroula, R. K. (2015). Genetic characterization of lentil (Lens culinaris L.) germplasm by using SSR markers. Agricultural and Biological Sciences Journal 1, 1626.Google Scholar
Ladizinski, D., Braun, D., Goshen, D. & Muehlbauer, F. J. (1984). The biological species of the genus Lens . Botanical Gazette 145, 253261.Google Scholar
Liang, X., Chen, X., Hong, Y., Liu, H., Zhou, G., Li, S. & Guo, B. (2009). Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biology 9, 35. doi: 10.1186/1471-2229-9-35.Google Scholar
Liewlaksaneeyanawin, C., Ritland, C. E., El-Kassaby, Y. A. & Ritland, K. (2004). Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theoretical and Applied Genetics 109, 361369.Google Scholar
Lombardi, M., Materne, M., Cogan, N. O. I., Rodda, M., Daetwyler, H. D., Slater, A. T., Forster, J. W. & Kaur, S. (2014). Assessment of genetic variation within a global collection of lentil (Lens culinaris Medik.) cultivars and landraces using SNP markers. BMC Genetics 15, 150. doi: 10.1186/s12863-014-0150-3.Google Scholar
Martins, W. S., Lukas, D. C. S., Neves, K. F. S. & Bertioli, D. J. (2009). A Web software for microsatellite marker development. Bioinformation 3, 282283.Google Scholar
Masoudi-Nejad, A., Tonomura, K., Kawashima, S., Moriya, Y., Suzuki, M., Itoh, M., Kanehisa, M., Endo, T. & Goto, S. (2006). EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Research 34(Suppl. 2), W459W462.Google Scholar
Metzgar, D., Bytof, J. & Wills, C. (2000). Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Research 10, 7280.Google Scholar
Miedaner, T. & Korzun, V. (2012). Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102, 560566.Google Scholar
Mishra, R. K., Gangadhar, B. H., Nookaraju, A., Kumar, S. & Park, S. E. W. (2012). Development of EST-derived SSR markers in pea (Pisum sativum) and their potential utility for genetic mapping and transferability. Plant Breeding 131, 118124.Google Scholar
Mnejja, M., Garcia-Mas, J., Audergon, J. M. & Arus, P. (2010). Prunus microsatellite markers transferability across rosaceous crops. Tree Genetics and Genomes 6, 689700.Google Scholar
Murray, M. G. & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8, 43214325.Google Scholar
Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences United States of America 70, 33213323.Google Scholar
Pandian, A., Ford, R. & Taylor, P. W. J. (2004). Transferability of sequence tagged microsatellite site (STMS) across four major pulses. Plant Molecular Biology Reporter 18, 395.Google Scholar
Pashley, C. H., Ellis, J. R., McCauley, D. E. & Burke, J. M. (2006). EST databases as a source for molecular markers: lessons from Helianthus. Journal of Heredity 97, 381388.Google Scholar
Periyannan, S., Moore, J., Ayliffe, M., Bansal, U., Wang, X., Huang, L., Deal, K., Luo, M., Kong, X., Bariana, H., Mago, R., McIntosh, R., Dodds, P., Dvorak, J. & Lagudah, E. (2013). The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341, 786788.Google Scholar
Phan, H. T. T., Ellwood, S. R., Hane, J. K., Ford, R., Materne, M. & Oliver, R. P. (2007). Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. culinaris. Theoretical and Applied Genetics 114, 549558.CrossRefGoogle ScholarPubMed
Pillen, K., Zacharias, A. & Léon, J. (2003). Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 107, 340352.CrossRefGoogle ScholarPubMed
Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. & Rafalski, A. (1996). The comparison of RFLP, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 2, 225238.Google Scholar
Prevost, A. & Wilkinson, M. J. (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics 98, 107112.Google Scholar
Qureshi, S. N., Saha, S., Kantety, R. V. & Jenkins, J. N. (2004). EST-SSR: a new class of genetic markers in cotton. Journal of Cotton Science 8, 112123.Google Scholar
Rahman, M. M., Sarker, A., Kumar, A., Ali, A., Yadav, N. K. & Rahman, M. L. (2009). Breeding for short season environments. In The Lentil: Botany, Production and Uses (Eds Erskine, W., Muehlbauer, F. J., Sarker, A. & Sharma, B.), pp. 121136. Wallingford, UK: CAB International.Google Scholar
Reddy, M. R. K., Rathour, R., Kumar, N., Katoch, P. & Sharma, T. R. (2009). Cross-genera legume SSR markers for analysis of genetic diversity in Lens species. Plant Breeding 129, 514518.Google Scholar
Rohlf, F. J. (2000). NTSYS-PC: Numerical Taxonomy and Multivariate Analysis System. User Guide, Version 2.11 T. Setauket, NY: Exeter Software.Google Scholar
Roy, S., Islam, M. A., Sarker, A., Malek, M. A., Rafii, M. Y. & Ismail, M. R. (2013). Determination of genetic diversity in lentil germplasm based on quantitative traits. Australian Journal of Crop Science 7, 1421.Google Scholar
Rozen, S. & Skaletsky, H. (2000). Primer3 on the www for general users and for biologist programmers. In Methods in Molecular Biology (Eds Misener, S. & Krawetz, S. A.), pp. 365386. New Jersey: Humana Press.Google Scholar
Saha, G. C., Sarker, A., Chen, W., Vandemark, G. J. & Muehlbauer, F. J. (2010). Inheritance and linkage map positions of genes conferring resistance to stemphylium blight in lentil. Crop Science 50, 18311839.Google Scholar
Saintenac, C., Zhang, W., Salcedo, A., Rouse, M. N., Trick, H. N., Akhunov, E. & Dubcovsky, J. (2013). Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341, 783786.Google Scholar
Sathya, M. & Jayamani, P. (2013). Cross species amplification of adzuki bean derived microsatellite loci and diversity analysis in green gram and related Vigna species. Molecular Plant Breeding 4, 8995.Google Scholar
Savage, G. P. (1988). The composition and nutritive value of lentil (Lens culinaris). Nutrition Abstracts and Reviews (Series A) 58, 319343.Google Scholar
Septiningsih, E. M., Prasetiyono, J., Lubis, E., Tai, T. H., Tjubaryat, T., Moeljopawiro, S. & McCouch, S. R. (2003). Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O . rufipogon. Theoretical and Applied Genetics 107, 14191432.CrossRefGoogle Scholar
Septiningsih, E. M., Pamplona, A. M., Sanchez, D. L., Neeraja, C. N., Vergara, G. V., Heuer, S., Ismail, A. M. & Mackill, D. J. (2009). Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Annals of Botany 103, 151160.Google Scholar
Sharma, S. K., Dawson, I. K. & Waugh, R. (1995). Relationships among cultivated and wild lentils revealed by RAPD analysis. Theoretical and Applied Genetics 91, 647654.Google Scholar
Sharma, S. K., Knox, M. R. & Ellis, T. H. N. (1996). AFLP analysis of the diversity and phylogeny of Lens and its comparison with RAPD analysis. Theoretical and Applied Genetics 93, 751758.Google Scholar
Sharpe, A. G., Ramsay, L., Sanderson, L. A., Fedoruk, M. J., Clarke, W. E., Rong, L., Kagale, S., Vijayan, P., Vandenberg, A. & Bett, K. E. (2013). Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil. BMC Genomics 14, 192. doi: 10.1186/1471-2164-14-192 Google Scholar
Sim, S. C., Yu, J. K., Jo, Y. K., Sorrells, M. E. & Jung, G. (2009). Transferability of cereal EST-SSR markers to ryegrass. Genome 52, 431437.Google Scholar
Simon, C. J. & Muehlbauer, F. J. (1997). Construction of a chickpea linkage map and its comparison with maps of pea and lentil. Journal of Heredity 88, 115119.Google Scholar
Singh, K. B. & Ocampo, B. (1997). Exploitation of wild Cicer species for yield improvement in chickpea. Theoretical and Applied Genetics 95, 418423.Google Scholar
Singh, M., Singh, B. I., Kumar, S., Dutta, M., Bansal, K. C., Karale, M., Sarker, A., Amri, A., Kumar, S. & Datta, S. K. (2014). Global wild annual Lens collection: a potential resource for lentil genetic base broadening and yield enhancement. Plos ONE 9, e107781. doi: 10.1371/journal.pone.0107781 Google Scholar
Soller, M. & Beckmann, J. S. (1983). Genetic polymorphism in varietal identification and genetic improvement. Theoretical and Applied Genetics 67, 2533.Google Scholar
Tar'an, B., Buchwaldt, L., Tullu, A., Banniza, S., Warkentin, T. D. & Vandenberg, A. (2003). Using molecular markers to pyramid genes for resistance to ascochyta blight and anthracnose in lentil (Lens culinaris Medik). Euphytica 134, 223230.Google Scholar
Tewari, K., Dikshit, H. K., Jain, N., Kumari, J. & Singh, D. (2012). Genetic differentiation of wild and cultivated Lens based on molecular markers. Journal of Plant Biochemistry and Biotechnology 21, 198204.CrossRefGoogle Scholar
Thudi, M., Upadhyaya, H. D., Rathore, A., Gaur, P. M., Krishnamurthy, L., Roorkiwal, M., Nayak, S. N., Chaturvedi, S. K., Basu, P. S., Gangarao, N. V. P. R., Fikre, A., Kimurto, P., Sharma, P. C., Sheshashayee, M. S., Tobita, S., Kashiwagi, J., Ito, O., Killian, A. & Varshney, R. K. (2014). Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping. PLoS ONE 9, e96758. doi:10.1371/journal.pone.0096758 Google Scholar
Tullu, A., Buchwaldt, L., Warkentin, T., Taran, B. & Vandenberg, A. (2003). Genetics of resistance to anthracnose and identification of AFLP and RAPD markers linked to the resistance gene in PI 320937 germplasm of lentil (Lens culinaris Medikus). Theoretical and Applied Genetics 106, 428434.Google Scholar
Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., Inukai, Y., Ono, K., Kanno, N., Inoue, H., Takehisa, H., Motoyama, R., Nagamura, Y., Wu, J., Matsumoto, T., Takai, T., Okuno, K. & Yano, M. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics 45, 10971102.Google Scholar
Varshney, R. K., Sigmund, R., Borner, A., Korzun, V., Stein, N., Sorrells, M. E., Langridge, P. & Graner, A. (2005). Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Science 168, 195202.Google Scholar
Varshney, R. K., Terauchi, R. & McCouch, S. R. (2014). Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biology 12, e1001883. doi: 10.1371/journal.pbio.1001883 Google Scholar
Yamamoto, T., Kimura, T., Sawamura, Y., Kotobuki, K., Ban, Y., Hayashi, T. & Matsuta, N. (2001). SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theoretical and Applied Genetics 102, 865870.Google Scholar
Yao, L., Zheng, X., Cai, D., Gao, Y., Wang, K., Cao, Y. & Teng, Y. (2010). Exploitation of Malus EST-SSRs and the utility in evaluation of genetic diversity in Malus and Pyrus . Genetic Resources and Crop Evolution 57, 841851.Google Scholar
Yap, I. V. & Nelson, R. J. (1996). Winboot: a Program for Performing Bootstrap Analysis of Binary Data to Determine the Confidence Limits of UPGMA Based Dendrograms. IRRI Discussion Papers Series. Manila, The Philippines: International Rice Research Institute.Google Scholar
Yuan, M., Gong, L., Meng, R., Li, S., Dang, P., Guo, B. & He, G. (2010). Development of trinucleotide (GGC) n SSR markers in peanut (Arachis hypogaea L.). Electronic Journal of Biotechnology 13(6). doi: 10.2225/vol13-issue6-fulltext-6 Google Scholar
Zhai, L., Liu, L., Zhu, X., Xu, L., Jiang, L. & Gong, Y. (2013). Development, characterization and application of novel expressed sequence tag-simple sequence repeat (EST-SSR) markers in radish (Raphanus sativus L.). African Journal of Biotechnology 12, 921935.Google Scholar
Supplementary material: File

Singh supplementary material

Table S1

Download Singh supplementary material(File)
File 21.9 KB