Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T14:51:19.614Z Has data issue: false hasContentIssue false

Performance and Reliability of SiC Power MOSFETs

Published online by Cambridge University Press:  07 January 2016

Daniel J. Lichtenwalner*
Affiliation:
Wolfspeed, a Cree Company, 3028 E. Cornwallis Rd, Research Triangle Park, NC 27709, U.S.A.
Brett Hull
Affiliation:
Wolfspeed, a Cree Company, 3028 E. Cornwallis Rd, Research Triangle Park, NC 27709, U.S.A.
Vipindas Pala
Affiliation:
Wolfspeed, a Cree Company, 3028 E. Cornwallis Rd, Research Triangle Park, NC 27709, U.S.A.
Edward Van Brunt
Affiliation:
Wolfspeed, a Cree Company, 3028 E. Cornwallis Rd, Research Triangle Park, NC 27709, U.S.A.
Sei-Hyung Ryu
Affiliation:
Wolfspeed, a Cree Company, 3028 E. Cornwallis Rd, Research Triangle Park, NC 27709, U.S.A.
Joe J. Sumakeris
Affiliation:
Cree, Inc. 4600 Silicon Drive, Durham, NC 27703, U.S.A.
Michael J. O’Loughlin
Affiliation:
Wolfspeed, a Cree Company, 3028 E. Cornwallis Rd, Research Triangle Park, NC 27709, U.S.A.
Albert A. Burk
Affiliation:
Wolfspeed, a Cree Company, 3028 E. Cornwallis Rd, Research Triangle Park, NC 27709, U.S.A.
Scott T. Allen
Affiliation:
Wolfspeed, a Cree Company, 3028 E. Cornwallis Rd, Research Triangle Park, NC 27709, U.S.A.
John W. Palmour
Affiliation:
Wolfspeed, a Cree Company, 3028 E. Cornwallis Rd, Research Triangle Park, NC 27709, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Due to the wide bandgap and other key materials properties of 4H-SiC, SiC MOSFETs offer performance advantages over competing Si-based power devices. For example, SiC can more easily be used to fabricate MOSFETs with very high voltage ratings, and with lower switching losses. Silicon carbide power MOSFET development has progressed rapidly since the market release of Cree’s 1200V 4H-SiC power MOSFET in 2011. This is due to continued advancements in SiC substrate quality, epitaxial growth capabilities, and device processing. For example, high-quality epitaxial growth of thick, low-doped SiC has enabled the fabrication of SiC MOSFETs capable of blocking extremely high voltages (up to 15kV); while dopant control for thin highly-doped epitaxial layers has helped enable low on-resistance 900V SiC MOSFET production. Device design and processing improvements have resulted in lower MOSFET specific on-resistance for each successive device generation. SiC MOSFETs have been shown to have a long device lifetime, based on the results of accelerated lifetime testing, such as high-temperature reverse-bias (HTRB) stress and time-dependent dielectric breakdown (TDDB).

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

References

REFERENCES

Baliga, B.J., Fundamentals of Power Semiconductor Devices, Springer Science, New York (2008).Google Scholar
Kimoto, T. and Cooper, J.A., Fundamentals of Silicon Carbide Technology, IEEE Press, John Wiley & Sons, Singapore (2014).Google Scholar
Iwata, H. and Itoh, K.M., J. Appl. Phys. 89(11), 62286234 (2001).CrossRefGoogle Scholar
Sumakeris, J.J., Jenny, J.R., and Powell, A.R., MRS Bulletin 30, 280286 (2005).Google Scholar
Powell, A.R., Sumakeris, J.J., Khlebnikov, Y., Paisley, M., Leonard, R., O’Loughlin, M., Deyneka, E., Gangwal, S., Ambati, J., Tsvetkov, V., Seaman, J., McClure, A., Horton, C., Kramarenko, O., Sakhalkar, V., Guo, J., Dudley, M., and Balkas, E., Inter. Conf. on SiC and Related Materials (ICSCRM) (Oct. 5, 2015).Google Scholar
Kong, H.S., Kim, H.J., Edmond, J.A., Palmour, J.W., Ryu, J., Carter, C.H. Jr., Glass, J.T., and Davis, R.F., Mater. Res. Soc. Symp. Proc. 97, 233 (1987)Google Scholar
Davis, S., Power Electronics Technol., pp. 3640, Feb. (2011).Google Scholar
Palmour, J. W., Cheng, L., Pala, V., Brunt, E. V., Lichtenwalner, D. J., Wang, G.-Y., Richmond, J., O′Loughlin, M., Ryu, S., Allen, S. T., Burk, A. A., and Scozzie, C., Proc. of the 26th Inter. Symp. on Power Semiconductor Devices & IC's (ISPSD), pp. 7982, (2014).Google Scholar
CoolMOS™ C7 Technology and Design Guide, Application Note AN 2013-04, V1.0 April (2013), Infineon Technologies.Google Scholar
Chung, G.Y., Tin, C.C., Williams, J.R., McDonald, K., Chanana, R.K., Weller, R.A., Pantelides, S.T., Feldman, L.C., Holland, O.W., Das, M.K., Palmour, J.W., IEEE Electron Dev. Lett. 22, 176178 (2001).Google Scholar
Okamoto, D., Yano, H., Hirata, K., Hatayama, T., Fuyuki, T., IEEE Electron Dev. Lett. 31, 710712 (2010).CrossRefGoogle Scholar
Lichtenwalner, D.J., Cheng, L., Dhar, S., Agarwal, A., Palmour, J.W., Appl. Phys. Lett. 105(18), 182107 (2014).Google Scholar
Penumatcha, A. V., Swandono, S., and Cooper, J. A., IEEE Trans. on Electron Devices 60(3), 923926 (2013).Google Scholar
Liu, G., Tuttle, B.R., and Dhar, S., Appl. Phys. Rev. 2, 021307 (2015).Google Scholar
Pala, V., Barkley, A., Hull, B., Wang, G., Ryu, S.-H., Van Brunt, E., Lichtenwalner, D.J., Richmond, J., Jonas, C., Capell, D.C., Allen, S., Casady, J., Grider, D., Palmour, J., IEEE Energy Conversion Congress and Exposition (ECCE), pp. 41454150 (2015).Google Scholar
Ryu, S.-H., Capell, C., Van Brunt, E., Jonas, C., O’Loughlin, M., Clayton, J., Lam, K., Pala, V., Hull, B., Lemma, Y., Lichtenwalner, D., Zhang, Q. J., Richmond, J., Butler, P., Grider, D., Casady, J., Allen, S., Palmour, J., Hinojosa, M., Tipton, C. W. and Scozzie, C., Semicond. Sci. Technol. 30, 084001 (2015).Google Scholar