Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T02:47:33.527Z Has data issue: false hasContentIssue false

On the Local Tb Theorem: A Direct Proof under the Duality Assumption

Published online by Cambridge University Press:  13 February 2015

Michael T. Lacey
Affiliation:
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA (lacey@math.gatech.edu)
Antti V. Vähäkangas
Affiliation:
Department of Mathematics and Statistics, PO Box 68, 00014, University of Helsinki, Finland (antti.vahakangas@helsinki.fi)

Abstract

We give a new direct proof of the local Tb theorem in the Euclidean setting and under the assumption of dual exponents. This theorem provides a flexible framework for proving the boundedness of a Calderón–Zygmund operator, supposing the existence of systems of local accretive functions. We assume that the integrability exponents on these systems of functions are of the form 1/p + 1/q ⩽ 1, the ‘dual case’ 1/p + 1/q = 1 being the most difficult one. Our proof is direct: it avoids a reduction to the perfect dyadic case unlike some previous approaches. The principal point of interest is in the use of random grids and the corresponding construction of the corona. We also use certain twisted martingale transform inequalities.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Auscher, P. and Routin, E., Local Tb theorems and Hardy inequalities, J. Geom. Analysis 23(1) (2013), 303374.Google Scholar
2. Auscher, P. and Yang, Q. X., BCR algorithm and the T(b) theorem, Publ. Mat. 53(1) (2009), 179196.CrossRefGoogle Scholar
3. Auscher, P., Hofmann, S., Muscalu, C., Tao, T. and Thiele, C., Carleson measures, trees, extrapolation, and T(b) theorems, Publ. Mat. 46(2) (2002), 257325.CrossRefGoogle Scholar
4. Beylkin, G., Coifman, R. and Rokhlin, V., Fast wavelet transforms and numerical algorithms, I, Commun. Pure Appl. Math. 44(2) (1991), 141183.CrossRefGoogle Scholar
5. Burkholder, D. L., Explorations in martingale theory and its applications, in École d’ Été de Probabilités de Saint-Flour XIX—1989, Lecture Notes in Mathematics, Volume 1464, pp. 166 (Springer, 1991).Google Scholar
6. Christ, M., A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60–61(2) (1990), 601628.Google Scholar
7. David, G. and Journé, J.-L., A boundedness criterion for generalized Calderón–Zygmund operators, Annals Math. (2) 120(2) (1984), 371397.CrossRefGoogle Scholar
8. Figiel, T., Singular integral operators: a martingale approach, in Geometry of Banach Spaces, Strobl, 1989, London Mathematical Society Lecture Note Series, Volume 158, pp. 95110 (Cambridge University Press, 1990).Google Scholar
9. Hofmann, S., A proof of the local Tb Theorem for standard Calderón-Zygmund operators, preprint (http://arXiv.org/abs/0705.0840, 2007).Google Scholar
10. Hofmann, S., Local T(b) theorems and applications in PDE, in Harmonic analysis and partial differential equations, Contemporary Mathematics, Volume 505, pp. 2952 (American Mathematical Society, Providence, RI, 2010).CrossRefGoogle Scholar
11. Hytönen, T. P., The sharp weighted bound for general Calderón-Zygmund operators, Annals Math. (2) 175(3) (2012), 14731506.CrossRefGoogle Scholar
12. Hytönen, T. and Martikainen, H., Non-homogeneous Tb theorem and random dyadic cubes on metric measure spaces, J. Geom. Analysis 22(4) (2012), 10711107.CrossRefGoogle Scholar
13. Hytönen, T. and Martikainen, H., On general local Tb theorems, Trans. Am. Math. Soc. 364(9) (2012), 48194846.Google Scholar
14. Hytönen, T. and Nazarov, F., The local Tb theorem with rough test functions, preprint (http://arXiv.org/abs/1206.0907, 2012).Google Scholar
15. Hytönen, T. P. and Vähäkangas, A. V., The local non-homogeneous Tb theorem for vector-valued functions, Glasgow Math. J. (2014), doi: 10.1017/S0017089514000123.Google Scholar
16. Lacey, M. T. and Martikainen, H., Local Tb theorem with L2 testing conditions and general measures: square functions, preprint (http://arXiv.org/abs/1308.4571, 2013).Google Scholar
17. Lacey, M. T. and Vähäkangas, A. V., Non-homogeneous local T1 theorem: dual exponents, preprint (http://arXiv.org/abs/1301.5858, 2013).Google Scholar
18. Lacey, M. T. and Vähäkangas, A. V., The perfect local Tb theorem and twisted martingale transforms, Proc. Am. Math. Soc. 142(5) (2014), 16891700.Google Scholar
19. Lacey, M. T., Sawyer, E. T., Shen, C.-Y. and Uriarte-Tuero, I., The two weight inequality for Hilbert transform, coronas, and energy conditions, preprint (http://arXiv.org/abs/1108.2319, 2011).Google Scholar
20. Lacey, M. T., Sawyer, E. T., Shen, C.-Y. and Uriarte-Tuero, I., Two weight inequality for the Hilbert transform: a real variable characterization, I, Duke Math. J. 163(15) (2014), 27952820.Google Scholar
21. Nazarov, F., Treil, S. and Volberg, A., Accretive system Tb-theorems on nonhomogeneous spaces, Duke Math. J. 113(2) (2002), 259312.CrossRefGoogle Scholar
22. Nazarov, F., Treil, S. and Volberg, A., The Tb-theorem on non-homogeneous spaces, Acta Math. 190(2) (2003), 151239 Google Scholar
23. Nazarov, F., Treil, S. and Volberg, A., Two weight estimate for the Hilbert transform and Corona decomposition for non-doubling measures, preprint (http://arXiv.org/abs/1003.1596, 2004).Google Scholar
24. Petermichl, S., Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol, C. R. Acad. Sci. Paris I 330(6) (2000), 455460.Google Scholar
25. Volberg, A., Calderón–Zygmund capacities and operators on nonhomogeneous spaces, CBMS Regional Conference Series in Mathematics, Volume 100 (American Mathematical Society/CBMS, 2003).Google Scholar