Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T06:55:53.063Z Has data issue: false hasContentIssue false

Optoplasmonic networks with morphology-dependent near- and far-field responses

Published online by Cambridge University Press:  21 December 2015

Wonmi Ahn
Affiliation:
Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA
Xin Zhao
Affiliation:
Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA
Yan Hong
Affiliation:
Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA
Björn M. Reinhard*
Affiliation:
Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA
*
*Address all correspondence to Björn M. Reinhard at bmr@bu.edu
Get access

Abstract

Optoplasmonic networks consisting of dielectric microsphere resonators and plasmonic nanoantennas in a morphologically well-defined on-chip platform support unique electromagnetic signatures that are hybrids of photonic whispering gallery modes and localized surface plasmon resonances. Here we explore the dependence of their near- and far-field responses on the key structural parameters, including the size of the gold nanoparticles forming the plasmonic elements, the separation between the microspheres, and the geometry of the chain. The high degree of structural flexibility, which is experimentally accessible through template guided self-assembly approaches, makes these optoplasmonic structures a unique electromagnetic material for tuning spectral shapes and intensities.

Type
Plasmonics, Photonics, and Metamaterials Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hong, Y., Ahn, W., Boriskina, S.V., Zhao, X., and Reinhard, B.M.: Directed assembly of optoplasmonic hybrid materials with tunable photonic–plasmonic properties. J. Phys. Chem. Lett. 6, 2056 (2015).CrossRefGoogle ScholarPubMed
2. Barth, M., Schietinger, S., Fischer, S., Becker, J., Nüsse, N., Aichele, T., Löchel, B., Sönnichsen, C., and Benson, O.: Nanoassembled plasmonic–photonic hybrid cavity for tailored light–matter coupling. Nano Lett. 10, 891 (2010).Google Scholar
3. Zhang, T., Callard, S., Jamois, C., Chevalier, C., Feng, D., and Belarouci, A.: Plasmonic–photonic crystal coupled nanolaser. Nanotechnology 25, 315201 (2014).CrossRefGoogle ScholarPubMed
4. Chamanzar, M. and Adibi, A.: Hybrid nanoplasmonic–photonic resonators for efficient coupling of light to single plasmonic nanoresonators. Opt. Express 19, 22292 (2011).Google Scholar
5. Ahn, W., Boriskina, S.V., Hong, Y., and Reinhard, B.M.: Photonic–plasmonic mode coupling in on-chip integrated optoplasmonic molecules. ACS Nano 6, 951 (2012).Google Scholar
6. Ahn, W., Hong, Y., Boriskina, S.V., and Reinhard, B.M.: Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks. ACS Nano 7, 4470 (2013).Google Scholar
7. Boriskina, S.V. and Reinhard, B.M.: Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits. Proc. Natl. Acad. Sci. USA 108, 3147 (2011).Google Scholar
8. Boriskina, S.V. and Reinhard, B.M.: Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates. Opt. Express 19, 22305 (2011).CrossRefGoogle ScholarPubMed
9. Ahn, W., Zhao, X., Hong, Y., and Reinhard, B.M.: Low-power light guiding and localization in optoplasmonic chains obtained by directed self-assembly. Under Review (2015).Google Scholar
10. Haddadpour, A. and Yi, Y.: Metallic nanoparticle on micro ring resonator for bio optical detection and sensing. Biomed. Opt. Express 1, 378 (2010).CrossRefGoogle ScholarPubMed
11. Xiao, Y.-F., Liu, Y.-C., Li, B.-B., Chen, Y.-L., Li, Y., and Gong, Q.: Strongly enhanced light–matter interaction in a hybrid photonic–plasmonic resonator. Phys. Rev. A 85, 031805 (2012).CrossRefGoogle Scholar
12. Lu, Q., Chen, D., Wu, G., Peng, B., and Xu, J.: A hybrid plasmonic microresonator with high quality factor and small mode volume. J. Opt. 14, 125503 (2012).Google Scholar
13. Arnold, S., Dantham, V.R., Barbre, C., Garetz, B.A., and Fan, X.: Periodic plasmonic enhancing epitopes on a whispering gallery mode biosensor. Opt. Express 20, 26147 (2012).Google Scholar
14. White, I.M., Oveys, H., and Fan, X.: Increasing the enhancement of SERS with dielectric microsphere resonators. Spectroscopy 21, 36 (2006).Google Scholar
15. Shopova, S., Rajmangal, R., Holler, S., and Arnold, S.: Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection. Appl. Phys. Lett. 98, 243104 (2011).Google Scholar
16. Santiago-Cordoba, M.A., Boriskina, S.V., Vollmer, F., and Demirel, M.C.: Nanoparticle-based protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 99, 073701 (2011).Google Scholar
17. Shi, C., Choi, H.S., and Armani, A.M.: Optical microcavities with a thiol-functionalized gold nanoparticle polymer thin film coating. Appl. Phys. Lett. 100, 013305 (2012).Google Scholar
18. Astratov, V.N.: Fundamentals and applications of microsphere resonator circuits. In Photonic Microresonator Research and Applications, editor-in-chief Rhodes, W.T. (Springer, Atlanta, GA, 2010), pp. 423457.Google Scholar
19. Luk'yanchuk, B., Zheludev, N.I., Maier, S.A., Halas, N.J., Nordlander, P., Giessen, H., and Chong, C.T.: The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707 (2010).Google Scholar
20. Fan, J.A., Wu, C., Bao, K., Bao, J., Bardhan, R., Halas, N.J., Manoharan, V.N., Nordlander, P., Shvets, G., and Capasso, F.: Self-assembled plasmonic nanoparticle clusters. Science 328, 1135 (2010).CrossRefGoogle ScholarPubMed
21. Hentschel, M., Saliba, M., Vogelgesang, R., Giessen, H., Alivisatos, A.P., and Liu, N.: Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. 10, 2721 (2010).Google Scholar
22. Lassiter, J.B., Sobhani, H., Fan, J.A., Kundu, J., Capasso, F., Nordlander, P., and Halas, N.J.: Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett. 10, 3184 (2010).Google Scholar
23. Gallinet, B., Siegfried, T., Sigg, H., Nordlander, P., and Martin, O.J.F.: Plasmonic radiance: probing structure at the Ångström scale with visible light. Nano Lett. 13, 497 (2013).Google Scholar
24. Mitsui, T., Wakayama, Y., Onodera, T., Hayashi, T., Ikeda, N., Sugimoto, Y., Takamasu, T., and Oikawa, H.: Micro-demultiplexer of coupled resonator optical waveguide fabricated by microspheres. Adv. Mater. 22, 3022 (2010).Google Scholar
25. Kapitonov, A.M. and Astratov, V.N.: Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities. Opt. Lett. 32, 409 (2007).Google Scholar